Suche nach dem Zerfall $B^0 \rightarrow \eta \phi$ am *BABAR*-Experiment

Stephan Otto

Institut für Kern- und Teilchenphysik Technische Universität Dresden

Öffentliche Verteidigung 28. April 2005

Inhalt

Das Standardmodell

Der Zerfall $B^0 \rightarrow \eta \phi$

Einordnung Theoretische Beschreibung Experimentelle Bedeutung

Das BABAR-Experiment

Datenanalyse

Datensätze Ereignis-Rekonstruktion Ereignis-Variablen Abzählmethode Maximum-Likelihood-Methode Systematische Unsicherheiten Ergebnisse

Das Standardmodell

Das Standardmodell

Der Zerfall $B^0 \rightarrow \eta \phi$ Das BABAR-Experiment

Das Standardmodell

- Leptonen ("leichte", freie Elementarteilchen)
 - $e^-, \mu^-, \tau^-, \nu_e, \nu_\mu, \nu_\tau$
- Quarks (gebundene Elementarteilchen)
 - ▶ u, d, s, c, b, t
- Mesonen ("mittelschwere" Teilchen): Quark und Antiquark (qq)
 - π, Κ, η, φ, D, B, ...
- Baryonen ("schwere" Teilchen): 3 Quarks (qqq)
 - ▶ *p*, *n*, Λ, Σ, ...
- elektroschwache Wechselwirkung: Photonen, Z- und W-Bosonen
 - $q \rightarrow q + \gamma, Z^0$
 - $u \rightarrow d' + W^+$
 - $\bullet d' = V_{ud}d + V_{us}s + V_{ub}b$
 - V_{ub} komplex \Rightarrow *CP*-Verletzung
- starke Wechselwirkung: Gluonen
 - $q \rightarrow q + g$
- genaue Berechnung von Zerfallsraten und CP-Verletzung
- hypothetische "Higgs"-Teilchen, mehr als 20 Parameter, …

Der Zerfall $B^0 \rightarrow \eta \phi$

Das Standardmodell

Der Zerfall $B^0 \rightarrow \eta \phi$ Einordnung Theoretische Beschreibung Experimentelle Bedeutung

Das BABAR-Experiment

Datenanalyse Datensätze Ereignis-Rekonstruktion Ereignis-Variablen Abzählmethode Maximum-Likelihood-Methode Systematische Unsicherheiten Ergebnisse

Einordnung

Quarkzustände

$$\begin{array}{lcl} |B^{0}\rangle & = & |d\overline{b}\rangle \\ |\overline{B}^{0}\rangle & = & |b\overline{d}\rangle \\ |\eta\rangle & = & \frac{1}{\sqrt{6}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle - 2|s\overline{s}\rangle \right) \\ |\phi\rangle & = & |s\overline{s}\rangle \end{array}$$

gluonischer Pinguin

reiner "Pinguin"-Zerfall

- b als "Valenz"-Quark
- d als "Zuschauer"-Quark
- "Faktorisierung" in η und ϕ

elektroschwacher Pinguin

Theoretische Beschreibung

Verzweigungsverhältnis des Zerfalls:

$$\mathcal{B}(B^0 \to \eta \phi) = \frac{\Gamma(B^0 \to \eta \phi)}{\Gamma(B^0)}$$

Partialbreite des Zerfalls:

$$\Gamma(B^0 \to \eta \phi) = \int \left| \langle \eta \phi | \mathcal{H}_{\text{eff}} | B^0 \rangle \right|^2 \mathrm{d}\Phi$$

effektiver Hamilton-Operator:

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{tb}^* V_{td} \sum_i C_i O_i$$

- ► CKM-Matrix-Elemente V_{tb}, V_{td}: Quark-Mischung
- Wilson-Koeffizienten C_i: perturbative (kurzreichweitige) QCD
- Pinguin-Operatoren O_i: nichtperturbative (langreichweitige) QCD

- Pinguin-Übergänge: mögliche "neue Physik" in der Quark-Schleife
 - neue Familien, neue Higgs-Felder, Supersymmetrie, ...
- Pinguin-Beiträge: mögliche "direkte" CP-Verletzung
 - Überlagerung von Pinguin- und "Baum"-Übergängen
- Pinguin-Zerfälle: saubere Untersuchung von Pinguin-Übergängen
 - keine Unterdrückung durch Baum-Übergänge

- Pinguin-Übergänge: mögliche "neue Physik" in der Quark-Schleife
 - neue Familien, neue Higgs-Felder, Supersymmetrie, ...
- Pinguin-Beiträge: mögliche "direkte" CP-Verletzung
 - Überlagerung von Pinguin- und "Baum"-Übergängen
- Pinguin-Zerfälle: saubere Untersuchung von Pinguin-Übergängen
 - keine Unterdrückung durch Baum-Übergänge

Vorhersagen					
	$\mathcal{B}(B^0 o \eta \phi)$				
	<i>N_c</i> = 2	<i>N_c</i> = 3	$N_c = \infty$		
Du, Xing (1993)		1.5 ×10 ⁻¹¹	1.0 ×10 ⁻⁷		
Deandrea et al. (1994)	1.30×10 ⁻⁸	8.55×10 ⁻¹²	4.8 ×10 ⁻⁸		
Du, Guo (1997)	6.11×10 ⁻⁹		7.73×10 ⁻⁸		

- Pinguin-Übergänge: mögliche "neue Physik" in der Quark-Schleife
 - neue Familien, neue Higgs-Felder, Supersymmetrie, ...
- Pinguin-Beiträge: mögliche "direkte" CP-Verletzung
 - Überlagerung von Pinguin- und "Baum"-Übergängen
- Pinguin-Zerfälle: saubere Untersuchung von Pinguin-Übergängen
 - keine Unterdrückung durch Baum-Übergänge

Unsicherheiten

Entwicklungsparameter N_a

D

- Skalenabhängigkeit
- Quark-Massen

igkeit	Vorhersagen			
1	$\mathcal{B}(B^0 o \eta \phi)$			
•	$N_c = 2$	<i>N_c</i> = 3	$N_c = \infty$	
Du, Xing (1993)		1.5 ×10 ⁻¹¹	1.0 ×10 ⁻⁷	
eandrea <i>et al.</i> (1994)	1.30×10 ⁻⁸	8.55×10 ⁻¹²	4.8 ×10 ⁻⁸	
Du, Guo (1997)	6.11×10 ⁻⁹		7.73×10 ⁻⁸	

- Pinguin-Übergänge: mögliche "neue Physik" in der Quark-Schleife
 - neue Familien, neue Higgs-Felder, Supersymmetrie, ...
- Pinguin-Beiträge: mögliche "direkte" CP-Verletzung
 - Überlagerung von Pinguin- und "Baum"-Übergängen
- Pinguin-Zerfälle: saubere Untersuchung von Pinguin-Übergängen
 - keine Unterdrückung durch Baum-Übergänge

Unsicherheiten

Entwicklungsparameter N_c

D

- Skalenabhängigkeit
- Quark-Massen

Messung (CLEO)

$$\mathcal{B}(B^0 \to \eta \phi) < 9 \times 10^{-6} \, (90\%)$$

Vorhersagen

1	$\mathcal{B}(B^0 o \eta \phi)$		
	<i>N_c</i> = 2	<i>N</i> _c = 3	$N_c = \infty$
Du, Xing (1993)		1.5 ×10 ⁻¹¹	1.0 ×10 ⁻⁷
eandrea <i>et al.</i> (1994)	1.30×10 ⁻⁸	8.55×10^{-12}	4.8 ×10 ⁻⁸
Du, Guo (1997)	6.11×10 ⁻⁹		7.73×10 ⁻⁸

Das BABAR-Experiment

Das Standardmodell

Der Zerfall $B^0 \rightarrow \eta \phi$ Einordnung Theoretische Beschreibung Experimentelle Bedeutung

Das BABAR-Experiment

Datenanalyse Datensätze Ereignis-Rekonstruktion Ereignis-Variablen Abzählmethode Maximum-Likelihood-Methode Systematische Unsicherheiten Ergebnisse

Das BABAR-Experiment

Datenanalyse

Das Standardmodell

Der Zerfall $B^0 \rightarrow \eta \phi$ Einordnung Theoretische Beschreibung Experimentelle Bedeutung

Das BABAR-Experiment

Datenanalyse

Datensätze Ereignis-Rekonstruktion Ereignis-Variablen Abzählmethode Maximum-Likelihood-Methode Systematische Unsicherheiten Ergebnisse

Datensätze

Daten von 1999 bis 2002

- 81.6 fb⁻¹ auf Resonanz
- $\Rightarrow 86 \times 10^6 B\overline{B}$ -Paare
- \Rightarrow 277 × 10⁶ q \overline{q} -Paare
- 9.6 fb⁻¹ im Kontinuum
- \Rightarrow 33 × 10⁶ $q\overline{q}$ -Paare

Monte-Carlo-Simulation

- $109 \times 10^6 B\overline{B}$ -Ereignisse
- 76×10^3 "Signal"-Ereignisse

Ereignis-Rekonstruktion

- Spuren in Vertex-Detektor, Driftkammer und Čerenkov-Detektor
- Photon-Kandidaten aus Energie-Clustern im Kalorimeter
- ▶ η -Kandidaten im Kanal $\eta \rightarrow \gamma \gamma$ aus 2 Photon-Kandidaten
- ▶ η -Kandidaten im Kanal $\eta \rightarrow \pi^+ \pi^- \pi^0$ aus 2 Spuren und π^0 -Kandidaten
- ▶ π^0 -Kandidaten im Kanal $\pi^0 \rightarrow \gamma \gamma$ aus 2 Photon-Kandidaten
- ▶ ϕ -Kandidaten im Kanal $\phi \rightarrow K^+K^-$ aus 2 Spuren mit Kaon-Identifizierung
- ▶ B^0 -Kandidaten aus η und ϕ -Kandidaten

12/25

Stephan Otto

Fisher-Diskriminante $\mathcal{F} = \sum_{i=1}^{9} c_i \sum_{j} |\boldsymbol{p}_{ij}| + c_{10} |\cos \measuredangle(\boldsymbol{t}, \boldsymbol{z})| + c_{11} |\cos \measuredangle(\boldsymbol{p}_0, \boldsymbol{z})|$

< 🗇 🕨 14 / 25

"Helizität" $\lambda = \frac{\mathbf{s} \cdot \mathbf{p}}{|\mathbf{p}|}$

Abzählmethode

- 1. Einträge in der Signalbox: Nsig
- 2. Einträge im Seitenband: N_{SB}
- 3. Untergrundverhältnis aus Kontinuum: $R = \frac{N_{\text{sig}}}{N_{\text{SB}}}$

17/25

Abzählmethode

- 1. Einträge in der Signalbox: Nsig
- 2. Einträge im Seitenband: N_{SB}
- 3. Untergrundverhältnis aus Kontinuum: $R = \frac{N_{\text{sig}}}{N_{\text{SB}}}$
- 4. Optimierung der Schnitte

Abzählmethode

- 1. Einträge in der Signalbox: Nsig
- 2. Einträge im Seitenband: N_{SB}
- 3. Untergrundverhältnis aus Kontinuum: $R = \frac{N_{sig}}{N_{SP}}$
- 4. Optimierung der Schnitte
- 5. Untergrundabzug:

$$S = N_{\rm sig} - R N_{\rm SB}$$

6. Selektionseffizienz aus Signal-MC:

$$\varepsilon = \frac{N_{\rm sig}}{N_{B^0}}$$

7. Verzweigungsverhältnis:

$$\mathcal{B}(B^0 \to \eta \phi) = \frac{S}{\varepsilon \,\mathcal{B}(\eta) \,\mathcal{B}(\phi) \,\mathcal{N}_{B^0}}$$

- N Ereignisse i = 1...N
- > 2 Kategorien *j*: Signal (j = 1), Untergrund (j = 2)
- ▶ 6 Variablen x_k (k = 1...6) mit Werten x_{ik} und Dichten f_{jk}
- > 2 Parameter: Signal-Erwartung (S), Untergrund-Erwartung (B)

Suche nach dem Zerfall $B^0 \rightarrow \eta \phi$ 2

28. April 2005 🔹 🗗 🕨 19 / 25

Suche nach dem Zerfall $B^0 \rightarrow \eta \phi$ 28. April 2005 $\Box > 20 / 25$

- 1. "Spielzeug"-Monte-Carlo-Simulationen mit *N*_{sig} Signal-Ereignissen
- 2. Verteilung der Signal-Erwartung \overline{S}

Systematische Unsicherheiten

- statistische Unsicherheit der Selektionseffizienz
- statistische Unsicherheit des Untergrundverhältnisses
- Abweichung der Signalverteilung in Simulation und Daten
- Abweichung der Untergrundverteilung in Kontinuum- und Resonanzdaten
- Anteil von Signalereignissen im Resonanzdaten-Seitenband
- Anteil von BB-Untergrund-Ereignissen in Kontinuum-Untergrund-Erwartung
- Unsicherheit der Photon-Rekonstruktions-Effizienz
- Unsicherheit der Spur-Rekonstruktions-Effizienz
- Unsicherheit der Kaon-Identifizierungs-Effizienz
- Unsicherheit der Anzahl der BB-Paare
- Unsicherheit der Verzweigungsverhältnisse der η und ϕ -Zerfälle

Ergebnisse

Das Standardmodell

Der Zerfall $B^0 \rightarrow \eta \phi$

Theoretische Beschreibu

Experimentelle Bedeutung

Das BABAR-Experiment

Datenanalyse Datensätze Ereignis-Rekonstruktion Ereignis-Variablen Abzählmethode Maximum-Likelihood-Methoo Systematische Unsicherheite Ergebnisse

- Suche nach dem Zerfall $B^0 \rightarrow \eta \phi$ in BABAR-Daten von 1999 bis 2002
- Kinematische Variablen ($m_{ES}, \Delta E, ...$)
- Ereignisform-Variablen (Fisher-Diskriminante, Helizitätswinkel)
- Abzählmethode (Schnitte, Zählung, Untergrundabzug)
- Maximum-Likelihood-Methode (Variablen-Dichten, Anpassung)
- blinde Analyse zur Vermeidung von persönlicher Beeinflussung
- Bestimmung aller systematischen Unsicherheiten
- (noch) keine statistisch signifikante Beobachtung
- kleinere Unsicherheit des Likelihood-Ergebnisses

- Suche nach dem Zerfall $B^0 \rightarrow \eta \phi$ in BABAR-Daten von 1999 bis 2002
- Kinematische Variablen ($m_{ES}, \Delta E, ...$)
- Ereignisform-Variablen (Fisher-Diskriminante, Helizitätswinkel)
- Abzählmethode (Schnitte, Zählung, Untergrundabzug)
- Maximum-Likelihood-Methode (Variablen-Dichten, Anpassung)
- blinde Analyse zur Vermeidung von persönlicher Beeinflussung
- Bestimmung aller systematischen Unsicherheiten
- (noch) keine statistisch signifikante Beobachtung
- kleinere Unsicherheit des Likelihood-Ergebnisses

$$\mathcal{B}(B^0\to\eta\phi)<3.28\times10^{-6}\,(90\%)$$

- Suche nach dem Zerfall $B^0 \rightarrow \eta \phi$ in BABAR-Daten von 1999 bis 2002
- Kinematische Variablen ($m_{ES}, \Delta E, ...$)
- Ereignisform-Variablen (Fisher-Diskriminante, Helizitätswinkel)
- Abzählmethode (Schnitte, Zählung, Untergrundabzug)
- Maximum-Likelihood-Methode (Variablen-Dichten, Anpassung)
- blinde Analyse zur Vermeidung von persönlicher Beeinflussung
- Bestimmung aller systematischen Unsicherheiten
- (noch) keine statistisch signifikante Beobachtung
- kleinere Unsicherheit des Likelihood-Ergebnisses

$$\mathcal{B}(B^0\to\eta\phi)<3.28\times10^{-6}\,(90\%)$$

- konsistent mit theoretischen Vorhersagen
- 3-fache Genauigkeit der vorherigen Messung

Stephan Otto

Suche nach dem Zerfall $B^0 \rightarrow \eta \phi$

28. April 2005 🔹 🗇 🕨 25 / 25