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Abstract

Presented is a search for the rare hadronic B meson decay B0 → ηφ. It is based on
86×106 BB pairs recorded by the BABAR experiment at the Stanford Linear Accelerator
Center between 1999 and 2002. φ mesons are reconstructed in the channel φ→ K+K−.
η mesons are reconstructed in the channels η → γγ and η → π+π−π0. Signal events
are identified by a candidate counting and a maximum-likelihood method. To ensure an
unbiased measurement, the number of signal events is blinded throughout the analysis.

Although no significant signal is found by either method, the maximum-likelihood
method obtains a smaller statistical uncertainty. In this method, the branching fraction
of the decay B0 → ηφ is determined by the upper limit B(B0 → ηφ) < 3.28×10−6 (90%).
This value includes a systematic uncertainty of 6.2%.

The cited upper limit is consistent with recent theoretical predictions. Therefore, this
search gives no indication for particle interactions that are not described by the Standard
Model of particle physics.

Kurzfassung

Vorgestellt wird eine Suche nach dem seltenen hadronischen B-Meson-Zerfall B0 → ηφ.
Sie basiert auf 86×106 BB-Paaren, die zwischen 1999 und 2002 vom BABAR-Experiment
am Stanford Linear Accelerator Center aufgezeichnet wurden. φ-Mesonen werden im
Kanal φ → K+K− rekonstruiert. η-Mesonen werden in den Kanälen η → γγ und η →
π+π−π0 rekonstruiert. Zur Identifikation von Signalereignissen wird eine Abzählmethode
und eine Maximum-Likelihood-Methode verwendet. Um eine unvoreingenommene Mes-
sung zu gewährleisten, bleibt die Anzahl der Signalereignisse während der gesamten
Analyse blind.

Durch keine der verwendeten Methoden wird ein signifikantes Signal nachgewiesen. Die
Maximum-Likelihood-Methode liefert jedoch eine kleinere statistische Unsicherheit. In
dieser Methode ist das Verzweigungsverhältnis des Zerfalls B0 → ηφ durch die obere
Grenze B(B0 → ηφ) < 3.28×10−6 (90%) gegeben. Dieser Wert enthält eine systematische
Unsicherheit von 6.2%.

Die angegebene obere Grenze ist mit aktuellen theoretischen Vorhersagen konsistent.
Damit gibt diese Untersuchung keine Hinweise auf Wechselwirkungen, die nicht durch
das Standardmodell der Elementarteilchenphysik beschrieben werden.





Man errs as long as he doth strive.

– Goethe
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Introduction

Physics research has always been motivated by the demand for symmetries. A popular
result, Einstein’s Theory of Relativity, is based on the assumption that the laws of nature
do not depend on the reference system from which they are observed.1 In particle physics,
symmetries are used to describe the internal structure of these laws. For instance, most
particle interactions have the same strength as their mirror images. This defines a
property called parity or “P” symmetry. The fact that not all processes obey this
symmetry was proven in 1956 by Chien-Shiung Wu when she observed that electrons
from radioactive cobalt-60 decays are aligned to the spins of the cobalt atoms. In our
classification of interactions, this process is a “weak” decay. While the other known
interactions — the electromagnetic and the “strong” interaction — obey parity, the
weak interaction is apparently parity-violating.

The physical reason for parity violation in weak decays are the different “helicities”
of neutrinos and anti-neutrinos: The former have left-handed spins, while the latter
have right-handed spins. It follows that a replacement of all particles in a weak decay
with their anti-particles temporarily restores parity. This replacement is called charge
conjugation or “C” transformation. Hence, the transformed parity is a “CP” symmetry.
The demand for CP symmetry leads to stringent constraints on the decays of neutral
mesons. For instance, there should be one short-living K0

S meson decaying into two
pions and one long-living K0

L meson decaying into three pions. In 1964, however, Cronin
and Fitch discovered that a small fraction of the K0

L mesons also decay into two pions.
Later, more evidence was found that the weak interaction is indeed CP -violating.

The property of CP violation unveils its full potential under inclusion of a third trans-
formation called time reversal. This “T” transformation rewinds each process, making
it run backward in time. The approval of relativity and quantum mechanics requires
that all interactions obey “CPT” symmetry. Since the weak interaction is CP -violating,
it must also violate time reversal. If it is proven not to, our understanding of relativity
and quantum mechanics has to be reviewed. Another implication of CP violation is that
shortly after the Big Bang matter and anti-matter were produced in unequal amounts.
This, of course, is the very reason for our existence.

The Standard Model of particle physics describes CP violation by the different mix-
ing of quarks and anti-quarks in the coupling to the Higgs boson. Unfortunately, the
predictions of this mechanism do not explain the amount of matter observed in the
universe. Moreover, the Higgs boson, which generates the masses of the fermions and
gauge bosons, has not yet been discovered. The experimental limits placed on its mass,

1Strictly speaking, this is one of the assumptions of Special Relativity.
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however, impose a “gauge hierarchy problem”: In the renormalization dictated by the
masses of the gauge bosons, the mass of the Higgs boson diverges. A variety of theories
have been developed to solve these problems. Among the most promising are supersym-
metry and string theory. Discussed are also extensions such as multiple Higgs bosons or
additional fermion generations. All of these theories have their own strengths and weak-
nesses. More importantly, they predict different deviations from the Standard Model.
The search for these deviations is the dominating task of modern particle physics.

The resolution achieved in particle experiments is proportional to the energy of the par-
ticles used. Therefore, precision tests of the Standard Model are the natural domain
of High Energy Physics. With the energies available today, however, K mesons are
no longer the most efficient system for the measurement of CP violation. Asymmetries
larger by several orders of magnitude can be observed in the system of neutral B mesons.
Established facilities for the production of these heavy mesons are large lepton colliders.
The vastly studied physics of lepton collisions and the clean structure of the collision
events allow measurements with the required efficiency and precision. Also needed are
particle detectors with good spatial coverage, high momentum resolution, efficient parti-
cle identification and reliable photon detection. These considerations were the basis for
the design and implementation of the BABAR experiment.

A characteristic of meson decays that makes them especially valuable for testing the
Standard Model are the so-called “penguin” transitions. Their feature is a virtual quark
loop that can interfere with other, potentially undiscovered particles. While penguin
transitions contribute to most decays, they are usually suppressed by the more likely
“tree” transitions. However, there is a rare class of B meson decays that does not
permit tree transitions. One of the products of these “pure” penguin decays is the φ
meson. It is used in the analysis presented in this thesis to search for penguin transitions
in the B meson decays recorded by the BABAR experiment. The objective of this analysis
is to find the most precise estimation for the branching fraction of the decay B0 → ηφ.

A detailed physical motivation for this analysis is given in Chapter 1 and 2. While
Chapter 1 discusses the BABAR experiment and its general physical concepts, Chapter 2
specializes on the theoretical description of rare hadronic B meson decays. The experi-
mental tools and methods used to identify the decay B0 → ηφ are described in Chapter
3. A summary of results concludes this thesis.



Chapter 1

The BABAR Experiment

The BABAR experiment at the Stanford Linear Accelerator Center was launched in De-
cember 1993. Its primary goal is the measurement of CP -violating asymmetries in BB
mesons systems. The high integrated luminosity and excellent reconstruction efficiency
needed for this purpose, however, makes the BABAR experiment interesting for a wide
range of physics studies. Important aspects of this rich research program are discussed
in Sec. 1.1.

In the BABAR experiment, BB meson pairs are produced in e+e− collisions. Electrons
and positrons are provided by the PEP-II storage ring [1] which was rebuilt by July 1998
to deliver a luminosity of 3 nb−1s−1. The collisions take place in the BABAR detector,
which is described in detail in Sec. 1.2. Since the beginning of data acquisition in
November 1999, it has recorded more than 240 million BB meson pairs.

The task of the BABAR collaboration is to operate the detector and to analyze the
recorded data. The distributed infrastructure deployed is addressed in Sec. 1.3. To
assure a successful experiment, the BABAR collaborators work closely with accelerator
operators, theorists and computing specialists. Up to the present day, approximately
600 physicists and engineers from ten different countries have joined the collaboration.

“Babar, the little elephant” [2] has been a popular cartoon figure since the 1930s. It lent
its name to the BABAR experiment as tribute to the exciting world of physics in the BB
system.

1.1 Physical Motivation

The BABAR experiment pursues an ambitious physics program. Its central target is the
Standard Model [3] of particle physics. With the high volume and high quality of the
recorded data, the predictions of this model can be tested with unequaled precision. Sig-
nificant deviations from the predictions are a crucial indication for “new” and unknown
physics. Small asymmetries are to be discovered, and the precision of many existing
measurements is to be improved.
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1.1.1 Measurement of Quark Mixing

In the Standard Model, elementary fermion fields are grouped by their chirality.1 By
demanding local gauge invariance, weak interactions are introduced as couplings of left-
handed spinor doublets to the W boson vector triplet. By the same principle, particle
masses are generated in the Higgs mechanism [4] by couplings of the left-handed doublets
and the remaining right-handed singlets to a scalar doublet with spontaneously broken
symmetry. In the quark sector, where all particles have non-vanishing masses, the Higgs
mechanism produces two independent mass matrices M (u)

αβ and M (d)
αβ . They generate the

masses of the “up”-type and the “down”-type members of the quark doublets, respec-
tively, in the three-family space αβ. The fact that up-type and down-type quarks are
grouped in left-handed doublets implies that only one matrix Mαβ can be diagonalized
at a time. It follows that only one type of quarks can be turned into mass eigenstates.
For the other type, mass eigenstates and chiral eigenstates are separated by a unitary
transformation. By definition, the left-handed doublets

(
u
d′

) (
c
s′

) (
t
b′

)
(1.1)

contain the mass eigenstates u, c, t,2 while the Cabibbo–Kobayashi–Maskawa (CKM)
matrix [5] Vαβ includes the mass eigenstates d, s, b3 by the transformation




d′

s′

b′


 =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb







d
s
b


 . (1.2)

If the quark generations are mixed by the matrix Vαβ , CPT invariance requires that
the associated antiquark generations are mixed by the complex conjugated matrix V ∗αβ.
Thus, complex phases in the CKM matrix are the origin of CP violation in the Standard
Model. They are usually presented in the Wolfenstein parameterization [6]

V ≈




1− 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 (1.3)

with the expansion parameters A = 0.81 and λ = 0.22. The six unitarity conditions
∑
α

VαβV
∗
αγ = 0 (1.4)

for the elements of the CKM matrix correspond to triangles in the complex plane. The
Unitarity Triangle with β = d and γ = b is shown in Fig. 1.1. Its angles

α = arg
(
− VtdV

∗
tb

VudV
∗
ub

)
, (1.5)

1Although it is often used to denote helicity, this is the proper definition of “left-handed” and “right-
handed”.

2These are the flavors “up”, “charm” and “top”.
3These are the flavors “down”, “strange” and “bottom”.
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β = arg
(
−VcdV

∗
cb

VtdV
∗
tb

)
, (1.6)

γ = arg
(
−VudV

∗
ub

VcdV
∗
cb

)
(1.7)

are gauge invariant4 combinations of six matrix elements. By measuring these matrix
elements in weak interactions, the triangle can be overconstrained and the unitarity of
the CKM matrix tested. This is a promising approach, since the largest matrix elements
Vtb, Vud and Vcd are already known to O(λ4). In the BABAR experiment, Vcb can be
measured in the semileptonic B meson decay B → D∗`ν, Vub can be measured in the
semileptonic decays B → π`ν and B → ρ`ν, and the missing information on Vtd can be
obtained from B0B0 mixing.

γ

α

β

(ρ , η)

(0 , 0) (1 , 0)

Figure 1.1 Unitarity Triangle of the uni-
tarity condition VudV

∗
ub+VcdV

∗
cb+VtdV

∗
tb = 0

for the elements of the CKM matrix. The
vertex coordinates follow from the Wolfen-
stein parameterization (Eq. 1.3) and the
normalization to the basis.

1.1.2 Measurement of CP Violation

Composed from the quark mass eigenstates defined in Sec. 1.1.1, each hadron with
fixed quark content is also a mass eigenstate. The quark content of neutral B mesons,
however, is time-dependent. Due to B0B0 mixing, a B meson produced as the quark
state |B0〉 = |db〉 or |B0〉 = |db〉 evolves into the combined state a(t)|B0〉 + b(t)|B0〉,
while the two B meson mass eigenstates are the time-independent combinations

|BH〉 = p|B0〉 − q|B0〉 , (1.8)
|BL〉 = p|B0〉+ q|B0〉 . (1.9)

In the BABAR detector, B0B0 meson pairs are produced in the coherent state

1√
2

[|B0
prod(t1)〉|B0

prod(t2)〉 − |B0
prod(t1)〉|B0

prod(t2)〉
]
, (1.10)

where t1,2 are the proper times of both mesons. Measurements of CP violation depend
on a “flavor tagging” decay that exposes the quark content of one of the mesons at
t1/2 = ttag. If the other meson decays into a CP eigenstate f at t2/1 = tCP, the asymmetry
in the decay rates

af (t) =
Γ(B0

prod(t) → f)− Γ(B0
prod(t) → f)

Γ(B0
prod(t) → f) + Γ(B0

prod(t) → f)
(1.11)
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depends on the time difference t = tCP − ttag by

af (t) =
(1− |λf |2) cos(∆mt)− 2Imλf sin(∆mt)

1 + |λf |2
, (1.12)

where ∆m is mass difference between |BH〉 and |BL〉 [7]. Since ~/∆m is of the same order
of magnitude as the mean B meson life time [8], the time-dependence of this asymmetry
can be experimentally observed. The gauge invariant4 product

λf =
q

p

Āf
Af

(1.13)

of the B0B0 mixing amplitudes p, q (Eq. 1.8 and 1.9) and the decay amplitudes

Af = 〈f |H|B0〉 , (1.14)
Āf = 〈f |H|B0〉 (1.15)

measures three types of CP violation:

CP violation in B0B0 mixing ∣∣∣∣
q

p

∣∣∣∣ 6= 1 , (1.16)

CP violation in the B0 decay ∣∣∣∣
Āf
Af

∣∣∣∣ 6= 1 , (1.17)

CP violation in the interference of B0B0 mixing and the B0 decay

Im

(
q

p

Āf
Af

)
6= 0 . (1.18)

As discussed in Sec. 1.1.1, CP violation in the Standard Model depends on the presence
of complex phases in quark mixing. B0B0 mixing is a consequence of quark mixing and
proceeds through intermediate up-type quarks of all three families. The mass depen-
dence of the mixing amplitudes, however, suppresses all of the lighter quarks [9]. As
a consequence, p and q only depend on the product of the CKM matrix elements Vtb
and Vtd. Since the magnitude of this product is constant under complex conjugation,
there is no significant CP violation in B0B0 mixing. In the case of the “golden channel”
B0 → J/ψK0

S which is governed by a tree-level W exchange, the decay amplitude AJ/ψK0
S

only depends on the product of Vcs and Vcb. Thus, there is no CP violation in this B0

decay. Because K0K0 mixing in the K0
S meson involves the product of Vcd and Vcs, the

CP violation in the interference of B0B0 mixing and this B0 decay is given by

λJ/ψK0
S

= −
(
V ∗tbVtd
VtbV

∗
td

)(
V ∗csVcb
VcsV

∗
cb

)(
V ∗cdVcs
VcdV

∗
cs

)
. (1.19)

4Only gauge invariant quantities are experimentally observable.
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While |λJ/ψK0
S
| = 1, Eq. 1.3 and 1.5 imply that ImλJ/ψK0

S
= sin 2β, so that the time-

dependent CP asymmetry (Eq. 1.12) simplifies to

aJ/ψK0
S
(t) = − sin 2β sin(∆mt) . (1.20)

By comparison with the Unitarity Triangle (Fig. 1.1), the measurement of this asym-
metry provides a powerful consistency check of the Standard Model. Similar, although
more complicated, techniques exist for the angles α and γ.

1.1.3 Search for New Physics

Physics beyond the Standard Model are expected to strongly affect the CP violation ob-
served in B meson decays. CP violation in both mixing and decay also occurs in systems
of D mesons. The predicted asymmetries, however, are so small that any measured effect
would be a proof for new physics. The large amount of charm quarks produced in e+e−

collisions and B meson decays makes the BABAR experiment an ideal facility for such
searches. The advanced vertex resolution and particle identification of the BABAR de-
tector provide the needed experimental precision. Since charmed mesons decay through
weak interactions of higher orders, they also reveal inconsistencies in the quark mixing
mechanism.

Other systems with seizable production cross sections in e+e− collisions on the Υ (4S)
resonance are tau lepton and photon pairs. Tau leptons as representatives of the heaviest
fermion family are most susceptible to undiscovered effects in mass generation. Since
they even decay into hadrons, they provide a clean frame for poorly understood final
state interactions caused by strong forces. The presence of different families of neutrinos
in leptonic tau decays permits searches for the mass acquisition and family mixing effects
known from the quark sector. Due to the high integrated luminosity, the BABAR experi-
ment can also find exotic states produced by high energy photon pairs, like multiquarks,
glueballs or meson molecules.

1.2 The BABAR Detector

The BABAR detector is a modern, multi-purpose particle detector. It combines high pre-
cision measurements with supreme reconstruction efficiency for all observable particles.
Good angular coverage and a minimum of inactive material are common features of all
detector systems. A schematic section of the detector is shown in Fig. 1.2. Each spatial
dimension spans approximately 6 m. The longitudinal axis of the detector is the z axis
of the right-handed coordinate system (x, y, z). The origin of this system is the detector
center. The entity of all detector systems covers the polar angle between 18◦ and 155◦.
The superconducting magnet coil that surrounds the central detector systems has an
inner radius of 1.38m and induces a magnetic field of approximately 1.5T.

1.2.1 Interaction Point

In Fig. 1.2, the beam pipe runs horizontally through the detector middle. The electrons
in the high energy beam, which enters from the left, have an energy of 9 GeV. The
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Figure 1.2 Schematic section of the BABAR detector with silicon vertex tracker (SVT), drift
chamber (DCH), electromagnetic calorimeter (EMC), magnet coil, instrumented flux return
(IFR) and detector of internally reflected Cherenkov light (DIRC) [10]. The longitudinal axis of
the detector is the z axis of the right-handed coordinate system (x, y, z).

positrons in the low energy beam, which enters from the right, have an energy of 3.1GeV.
The beams are brought to collision in the interaction point in the detector center.

In their center-of-mass system, the beams have an energy of 10.6 GeV, which is the mass
of the Υ (4S) resonance of bb quark pairs. More than 96% of the quark pairs, which are
produced at a cross section of 1.05 nb [7], decay into BB meson pairs. Due to their high
masses [8], the B mesons are produced nearly at rest. In the detector coordinate system,
they are boosted in the positive z direction, which becomes the “forward” direction of
the detector, with βγ = 0.56. In its mean life time [8], each B meson passes a distance
of ∆z ≈ 260µm. The concept of the “asymmetric collider” allows the individual decay
time of each B meson to be inferred from its measured decay vertex. It also dictates the
asymmetric design of the detector systems.

1.2.2 Tracking System

In beam collisions and B meson decays a large number of charged particles are produced.
Among those that escape the interaction point are electrons, muons, pions and kaons.
While they pass through the surrounding matter, they loose part of their energy in
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collisions5 with atomic electrons. The average energy loss per path length is described
by the Bethe–Bloch formula [11]

− dE
dx

= 2πN Z me c
2 r2e

1
β2

[
ln

(
2me c

2 β2 γ2Wmax

I2

)
− 2β2

]
, (1.21)

where N and Z are the atomic density and number, me and re are the electron mass and
radius, Wmax is the maximum energy transfer and I is the mean excitation potential. If
the transfered energy is sufficient to ionize the atoms, the track of the passing particle can
be made visible. The BABAR detector implements this method in a two-stage tracking
system which consists of an inner silicon vertex tracker and an outer drift chamber. Both
stages are placed inside the magnetic field B which forces each single charged particle
with transverse momentum pt onto a circular path with radius r = pt/B. The combined
effects of energy loss and magnetic deflection render the tracks into helices.

The silicon vertex tracker (SVT) consists of 5 layers of silicon micro-strip detectors.
These are 300µm thick n-type silicon wafers with p+-type and n+-type readout strips
on opposite sides.6 Charge carrier diffusion at the np+ junction creates a depletion7 zone
which is expanded over the whole detector volume by an external voltage of 25 – 35 V.
Ionization of the silicon atoms by charged particles creates new charge carriers that are
transported in the electric field and collected in the strips. The strips on both sides of
the wafers are placed orthogonally to each other, thus allowing a measurement of both
the longitudinal distance z and the azimuthal angle ϕ. A total of 340 detectors and the
readout electronics for approximately 150,000 channels are organized in 40 – 240 mm long
modules and arranged azimuthally around the beam axis. The arrangement of all 52
modules is shown in Fig. 1.3. The whole SVT structure is fixed by a carbon fiber space
frame and mounted inside the 20 cm inner radius of the support tube that also houses
the beam pipe and several PEP-II magnets. This central placement and a strip pitch of
50 – 100µm allow the inner silicon layers to reconstruct the primary decay vertices with
a resolution of σz = 55µm. The outer layers mainly serve for alignment with the drift
chamber. The SVT is also the only system for reconstruction of tracks with a transverse
momentum pt < 100MeV/c.

The drift chamber (DCH) is used for the resolution of secondary vertices and the re-
construction of all tracks with a transversal momentum pt ≥ 100MeV/c. It consists of
40 concentric layers of aluminum wires that are spanned azimuthally around the beam
axis in a gas mixture of 80% helium and 20% isobutane. Each layer consists of 96–256
hexagonal cells of field wires with one sense wire in the center of each cell. While the field
wires are grounded, the sense wires are kept at a potential of 1 – 1.6 kV. Upon ionization
of the gas atoms in a cell by passing charged particles, the freed electrons start drifting
toward the sense wire. On their way they ionize more atoms, so that after a known drift
time a cascade of O(104) electrons is collected. The actual gain is continuously updated
from the analysis of collision events. The DCH layers are grouped into 10 superlayers,
the first four of which are shown in Fig. 1.4. They alternate as indicated in their axial
adjustment, allowing both the longitudinal and the azimuthal positions of tracks to be

5The term “collision” here stands for all excitation and ionization effects caused by Coulomb forces.
6A n(+)-type semiconductor is (heavily) doped with electron donors. A p(+)-type semiconductor is

(heavily) doped with electron acceptors.
7“Depletion” means the absence of any charge carriers.
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measured. The azimuthal resolution is σϕ = 1 mrad. The collected charge measures
the energy loss dE/dx with a resolution of 7.5%. The wires reach from z = −102 cm
in backward direction to z = 175 cm in forward direction and are held by conical end
plates. The backward end plate also holds the high voltage supplies and the readout
electronics of the 7,104 channels. Both end plates and the inner and outer walls, which
are mounted at radii of 22.5 cm and 80 cm, respectively, are made of carbon fiber. Fig.
1.5 shows the joint distribution of dE/dx and momentum measured in the DCH. Single
particle species can be identified by the superimposed predictions of the Bethe–Bloch
formula.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 1.3 Transverse section of the silicon vertex tracker
[12]. The inner layers (1–3) measure the vertex position. The
outer layers (4, 5) serve for alignment with the drift chamber.

Figure 1.4 Transverse section of the innermost four su-
perlayers of the drift chamber [12].
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Tracks in the tracking system are parameterized by the vector (d0, ϕ0, ω, z0, tanλ) of the
coordinates (d0, ϕ0, z0) of the point of closest approach (POCA) to the z axis, the inverse
transverse momentum ω = 1/pt and the dip λ to the transverse plane at this point. The
track parameters are fitted to the single position, time and energy measurements using
a Kalman algorithm [13] which takes into account the distributions of the magnetic field
and the detector material. The time-distance relation of the drift is calibrated with e+e−

and µ+µ− events. Two separate algorithms recover helices that end in the SVT or tracks
that are scattered in the material between SVT and DCH. The POCA coordinates, which
are mainly determined by the SVT measurements, achieve resolutions of σd0

= 23µm,
σϕ0

= 0.43mrad and σz0
= 29µm. The dip resolution is σtan λ = 0.53 × 10−3, and the

transverse momentum resolution can be parameterized by

σpt

pt
= 0.13%

pt
GeV/c

+ 0.45% . (1.22)
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Figure 1.5 Joint distribution of energy loss per
path length dE/dx and momentum measured in
the drift chamber for electrons (e), muons (µ),
pions (π), kaons (K), protons (p) and deuterons
(d) [12]. Superimposed are the predictions of the
Bethe–Bloch formula (Eq. 1.21). Muons and pions
are indistinguishable. Pions and kaons can only be
separated at momenta below 0.7 GeV/c.

1.2.3 Particle Identification

As seen in figure Fig. 1.5, pions and kaons can be separated by their energy loss dE/dx
at momenta below 0.7GeV/c. An efficient reconstruction of hadronic events, however,
requires reliable particle identification over the full kinematic range. To provide for
this, a novel device has been designed for use in the BABAR detector. It measures the
velocity of charged particles by detection of internally reflected Cherenkov light (DIRC).
Its overall layout is shown in Fig. 1.6. It consists of 144 bars of fused silica that are
optically connected to a steel standoff box at the backward end of the detector. The
1.7 cm thick bars reach from z = −315 cm to z = 175 cm and are arranged in 12 planar
sectors around the drift chamber. The sectors are separately sealed and mounted between
two aluminum support cylinders. The energy deposited in the bar material by passing
charged particles polarizes the molecules which emit photons in instant transitions to
their ground states. The material is chosen such that the velocity of the emitted photons
is smaller than the velocity of the passing particles. Hence these photons form a plane
electromagnetic shock wave known as Cherenkov light.8 From geometrical considerations
it is apparent that the Cherenkov angle ϑC between the path of the particle and the
direction of the light depends on the particle velocity β as

cosϑC =
1
β n

, (1.23)

where the refraction index n of the material depends on the light frequency. The pro-
duced Cherenkov light is transported inside the bars by internal reflection. Light in
forward direction is reflected by mirrors on the forward ends, and all light is transferred
through a backward window into the standoff box. The standoff box is filled with pu-
rified water, which has a refraction similar to the silica and transports the light over
a radius of 1.17m to the outer wall, where it is detected by an array of 10,752 photo-
multiplier tubes (PMT’s). The PMT’s, which operate outside the magnetic field of the
coil, use the photoelectric effect to convert photon radiation into an electric current and
are read out from the outer side of the wall. The Cherenkov angle is preserved over the
full light transfer and reconstructed from the detection time, the PMT position and the

8Cherenkov light is a “density correction” to the Bethe–Bloch formula (Eq. 1.21).
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DCH track direction with a resolution of σϑC
= 2.5 mrad. The DIRC identifies kaons

with momenta up to 3.5GeV/c with an efficiency larger than 90% while misidentifying
pions as kaons with a probability smaller than 12%.
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Figure 1.6 Longitudinal section of the DIRC (seen against the x axis) [12]. The Cherenkov
light emitted along the track trajectory is transported inside the silica bars by internal reflection
and detected by a PMT array outside the magnetic field.

1.2.4 Electromagnetic Calorimeter

While charged particles are detected by their energy loss in the tracking system, photons
pass this system unobserved. The presence of π0 and η mesons in B meson decays,
however, leads to the production of equal amounts of charged particles and photons.
For detection of the photons, an electromagnetic calorimeter (EMC) is installed in the
space between the DIRC and the magnet coil. The EMC consists of 6580 thallium-
doped cesium iodide (CsI(Tl)) crystals that are distributed over a cylindrical barrel and
a conical forward end cap.

Two related processes provide for detection of the photons: pair production and
bremsstrahlung.9 Pair production is the process in which a photon converts into an
electron-positron pair. Bremsstrahlung is the process in which an electron looses part of
its energy by emission of a photon. Both processes can only conserve energy and momen-
tum by additional interactions with surrounding matter.10 In CsI, the mean path of a
photon before pair production is X0 = 1.85 cm. Over the next radiation length X0, both
the electron and the positron produced emit on average one bremsstrahlung photon. The
continuation of this cycle leads to an electromagnetic shower that consists of N ≈ 2t

9“Bremsstrahlung”, adopted from German, means “deceleration radiation”.
10In the Feynman picture, this is described by the exchange of virtual photons.
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particles after t radiation lengths. If the original photon had the energy E0, the shower
particles have energies E ≈ E0/N . The shower propagates until the electrons are slowed
down to the critical energy Ec at which the energy loss in collisions, described by Eq.
1.21, becomes dominating. Since this energy loss rises with falling electron velocity, the
shower ceases after tmax ≈ log2(E0/Ec). That means that a photon with the maximum
energy of E0 = 6 GeV is stopped in CsI, which has a critical energy of Ec = 10MeV, at
xmax ≈ 17 cm. To minimize energy leakage, the length of the EMC crystals ranges from
29.6 to 32.4 cm. The transverse dimension of the shower is described by the Moliere
radius

RM = X0
Es
Ec

(1.24)

and the multiple scattering energy Es = 21.2MeV [14]. More than 90% of the shower
is contained within a distance of 2RM from the longitudinal axis. The resulting Moliere
radius for CsI is 3.8 cm. Since 50% of the photons from B meson decays have energies
E0 < 200MeV and the energy deposited in each crystal must be separated from electronic
noise, the transverse width of the crystals is chosen larger than RM . Their trapezoidal
cross section rises from 4.8× 4.7 cm on the front face to 6.1× 6.0 cm on the back face.

After the shower is absorbed into atomic excitations, the CsI acts as a scintillator:
it reemits the absorbed energy as visible light. This light is detected by two silicon
photodiodes glued to the crystal back face. In the depletion zone of these silicon detectors
(see Sec. 1.2.2), photons create charge carriers by the photoelectric effect. The light
response of each crystal is regularly calibrated at two distinct energies: Photons of
6.13MeV are induced by a radioactive fluid that is circulated through aluminum pipes
in front of the crystals. Between 3 and 9 GeV, the correlation between energy and
polar angle of electrons in e+e− events is used. The response between these energies
is interpolated logarithmically. For measurement of the readout linearity and for short-
term monitoring, the EMC is equipped with a light pulser system that induces a set
amount of light into each crystal. Two low-noise preamplifiers are integrated with the
diodes in an aluminum frame. The analog signals from the preamplifiers include two fixed
amplifications. They are combined with two further amplification steps and digitalized
in the readout electronic boards on the backward end of the detector. The resulting
energy ranges are 0 – 50MeV, 50 – 400MeV, 0.4 – 3.2GeV and 3.2 – 13.0 GeV.

Each crystal is wrapped into a sequence of reflecting and insulating foils and fitted into a
300µm strong carbon fiber compartment. The complete support and readout structure
is shown in Fig. 1.7. In the barrel region, 21 compartments form a module, and each
module is separately mounted to an external aluminum support structure. The barrel
consists of 48 rings to 120 crystals. The barrel rings cover the polar angle between 27◦ and
141◦. In the end cap, 41 compartments form a module, and a total of 20 modules makes
up 8 rings. The end cap rings cover the polar angle between 16◦ and 27◦. Each ring has
a non-projectivity of 15 – 45 mrad to reduce the energy loss between the compartments.
The whole EMC is surrounded by a double-layered aluminum Faraday shield and kept
under a temperature controlled nitrogen atmosphere.

Electromagnetic showers in the EMC are produced by photons and by electrons. In
addition, charged pions and kaons produce hadronic showers (see Sec. 1.2.5), which
have electromagnetic components. The different shapes of these showers contribute to
particle identification. Each shower deposits its energy into a cluster of neighboring
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crystals. Each observed energy cluster, however, can originate from multiple showers.
To find all showers, the clusters are split into “bumps”. Each bump represents a local
maximum of the crystal energies. The bump energy

E0 =
Nc∑

i=1

εiEi (1.25)

is the fraction of the energies Ei of all Nc crystals in the cluster given by the weights εi.
The bump centroid

r0 =

Nc∑
i=1

ρiri

Nc∑
i=1

ρi

(1.26)

is the center of gravity of the crystal coordinates ri calculated with the weights ρi. The
weights εi and ρi for all Nb bumps are found by iteration of a two-step algorithm. In
the first step, the centroids r0 are calculated from

ρi = 4 + ln
(
εiEi
E0

)
, (1.27)

where the energy weights are initialized by εi = 1. In the second step, the energy weights
are calculated from the crystal distances Ri = |ri − r0| and the Moliere radius RM by

εi =
Eie

(
−2.5 Ri

RM

)

Nb∑
j=1

Eje

(
−2.5 Rj

RM

) . (1.28)

The iteration ends when the centroids are stable within 1mm. The achieved resolution
in both angular coordinates depends on the energy E by

σϑ = σϕ =
3.87 mrad√

E
GeV

. (1.29)

The energy resolution can be expressed by the quadratic sum

σE

E
=

2.3%
4

√
E

GeV

⊕ 1.9% . (1.30)

By matching the bump centroids with track positions, showers from charged particles
are identified. By evaluating the ratio of bump energy and track momentum, (pure)
electromagnetic and hadronic showers are separated.

1.2.5 Instrumented Flux Return

Since muons and pions have almost the same mass, they are indistinguishable in the
tracking system and the DIRC. In the EMC, muons only deposit collision energy, while
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Figure 1.8 Cross section of a resistive plate cham-
ber (RPC) used in the instrumented flux return (IFR)
[12]. The active volume consists of a 2 mm wide gas
gap under a voltage of approximately 8 kV.

pions start showering. The measured energy, however, is of the same order. Another
unidentified species are K0

L mesons from B meson decays, which start showering in the
EMC, but do not deposit all their energy. These ambiguities are resolved in interactions
with the massive iron yoke that surrounds the magnet coil and returns the magnetic
flux into the detector. All hadrons lose their energy in hadronic showers. Unlike electro-
magnetic showers, these showers are spawned by inelastic collisions with atomic nuclei.
Most of the particles produced in these collisions are pions. Since on average one third
of them is neutral and decays rapidly into photons, hadronic showers have seizable elec-
tromagnetic components. While these components proceed until the electrons reach the
critical energy (see Sec. 1.2.4), the hadronic propagation stops as soon as the energy of
the hadrons sinks under the threshold for pion creation. The remaining energy of both
components is lost in ionization.

Due to their hadronic showering, pions are stopped in the flux return measurably before
the muons which do not take part in hadronic interactions. On the neutral side, iso-
lated showers in the EMC that continue in the flux return are identified as K0

L mesons.
Although the detectable energy in their hadronic showers fluctuates strongly, their mo-
menta in the boosted B meson decays are sufficiently correlated to their polar angles.
To uncover the paths of muons and hadrons, the hexagonal flux return is segmented into
single layers that increase in width from 2 cm at the inside to 10 cm at the outside of the
detector. The 3.2 – 3.5 cm wide gaps between these layers are instrumented with a total
of 742 resistive plate chambers (RPC’s). 19 RPC layers are installed in the central bar-
rel, and 18 layers in each of the end caps. 64 more RPC’s are arranged in two cylindrical
layers around the magnet coil. The RPC’s consist of two 2 mm strong bakelite sheets
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that are kept at a distance of 2 mm by aluminum frames and polycarbonate spacers. The
external surfaces of the sheets are coated with graphite and connected to a high voltage
of approximately 8 kV against each other. The gaps between the sheets are filled with a
gas mixture of 56.7% Argon, 38.8% Freon 143a and 4.5% isobutane that is continuously
replaced. If the gas atoms are ionized, the strong electric field causes multiple electron
cascades (see Sec. 1.2.2) that are eventually “quenched” by the Freon molecules. The
charge signals are read out by aluminum strips that are capacitively coupled to the ex-
ternal surfaces of the sheets. The strips are arranged in two orthogonal directions and
provide both longitudinal and azimuthal position measurements with angular resolu-
tions of the order of 60mrad. The strips are separated from the aluminum frame by two
4mm thick foam sheets. They make a total of 38,500 channels with readout electronics
installed in the iron gaps or just outside the detector. Fig. 1.8 shows the complete RPC
layout. By the instrumented flux return (IFR) concept, muons are identified with an
efficiency of 90%, while the probability for misidentifying hadrons as muons is smaller
than 8%.

1.2.6 Data Acquisition
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L1 Trigger
Processor

Fast Control
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L3 Trigger
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Figure 1.9 Map of the data acquisition system of the BABAR detector [12].

A map of the data acquisition (DAQ) system of the BABAR detector is shown in Fig. 1.9.
The DAQ system is a federation of specialized subsystems that satisfies the needs for
high precision and high volume data processing. The front-end electronics (FEE’s) of
all detector systems are installed on the detector. They shape and digitalize the analog
signals and send them at a rate of 1.2Gbit/s via optical fibers to the external readout
modules (ROM’s). The ROM’s are 157 Motorola PowerPCs running the real-time op-
erating system VxWorks. They are distributed over 23 VME crates that constitute the
online data flow (ODF) system. In the ROM’s, the detector data are compressed to their
relevant “features” and buffered for event building. The first trigger level (Level 1) is
hosted by 5 more VME crates. To assure redundancy and flexibility of data acquisition,
the Level 1 trigger contains separate processors for DCH, EMC and IFR. The trigger
processors receive hit patterns from the FEE’s and ROM’s and generate trigger signals
on 24 trigger lines at a rate of 2 kHz. The trigger lines are linked to the fast control
and timing system (FCTS) which consists of one VME crate and one dedicated module
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in each ODF crate. The FCTS propagates each trigger “accept” signal to the ROM’s
and initiates the event building cycle. This cycle proceeds in four nested steps the last
of which is propagated to the online event processing (OEP) branch of an online com-
puting farm. The computing farm consists of 32 Sun workstations running under the
Solaris operating system and is connected to the ODF crates via a 100Mbit/s Ethernet.
The farm also hosts the second active trigger level (Level 3) that filters the events by
physics content and reduces their rate to 120Hz. The events are written to disk in an
intermediate format and passed to the online prompt reconstruction (OPR) branch.

In OPR, the events are exposed to a first analysis and prepared for final storage. The
immediate analysis of the physics content helps the detector operators assure a constant
data quality. The final storage of the event data is organized in 5 categories.11 While the
first category contains the raw output of the OEP system, the second category contains
the tracks (see Sec. 1.2.2) and energy clusters (see Sec. 1.2.4) found by OPR. The third
and fourth category are compressed versions of the former two, commonly referred to as
data summary tapes (DST’s). They serve as input to offline reconstruction and physics
analysis. The fifth category collects various tags that are assigned to the events by
defined selection criteria. All categories of event data are stored in an object-oriented
database. A separate such database contains the associated running conditions of the
detector.

1.3 Software Infrastructure

The BABAR experiment provides a uniform software infrastructure. It is distributed over
all collaborating institutes and supports both commercial and free (Linux) implementa-
tions of the UNIX operating platform. To enforce stability and flexibility, all developed
code uses an object-oriented standard. The programming language of choice is C++ [15].
Its modular design uses code classes as abstractions of hardware objects (e.g. single
detector components) or physical objects (e.g. tracks or energy clusters). Specialized
classes (e.g. particles of a certain species associated with a combination of tracks and
energy clusters) are conveniently derived by the system of class inheritance. Established
routines traditionally programmed in Fortran can be easily accessed via object-oriented
interfaces.

The BABAR software infrastructure extends to real-time, online and offline applications.
The separate software modules are pooled in approximately 1,600 software packages.
While the code development is distributed over large parts of the collaboration, in-
dividual assignments of packages ensure code convergence and maintenance. Package
evolution is managed by the commonly used versioning system CVS. Central package
repositories are accessible via the network file system AFS. The network connection
between different institutes is based on the Internet.12

Software packages for data analysis are issued in dedicated releases. While development
releases are updated daily, extensively tested “production” releases persist over several

11There is an additional category for Monte Carlo generated information.
12Interestingly, the Internet was initiated in 1969 with a network connection between the University

of California, L. A., and the Stanford Research Institute. 22 years later, the Stanford Linear Accelerator
Center hosted the first web page outside Europe.
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years. As user interface, all releases contain an application framework. The framework
processes all modules used in an application in predefined sequences. A configuration
of modules and sequences in the script language Tcl is possible in both interactive
and batch processing. All releases provide generic sequences for access to the databases,
reconstruction of elementary physical objects and storage of individual results in a variety
of formats. All application modules are derived from the class AppModule and implement
the methods

AppResult beginJob(AbsEvent *);
AppResult beginRun(AbsEvent *);
AppResult event(AbsEvent *);
AppResult endRun(AbsEvent *);
AppResult endJob(AbsEvent *);

that are called by the framework for each new application, detector run or data event,
respectively. The AbsEvent object referenced in the method arguments contains lists
of all objects created by preceding modules. A global AbsEnv object provides access to
running conditions and geometrical constants of the detector. The returned AppResult
object notifies the framework about the processing success.



Chapter 2

The Decay B0 → ηφ

The decay B0 → ηφ is a rare hadronic decay of the B meson. Its branching fraction is of
the order of one in one million, which makes its analysis a challenging task. Nevertheless,
the study of rare meson decays provides a unique insight into the basic structure of
matter. Since such decays proceed through a variety of internal states, they expose
the properties of highly virtual particles as well as possibly undiscovered interaction
mechanisms.

The fundamental difficulty of a description of rare hadronic decays is the close relation-
ship of weak and strong interactions. While the former can be conventionally treated
by the means of perturbation theory, the latter reveal a scale dependence that makes
this powerful procedure unreliable. As a consequence, theoretical predictions for the
branching fractions of rare hadronic decays exhibit large uncertainties and pronounced
model dependences.

This chapter reviews a common approach to accommodate this contrary situation. Sec.
2.1 introduces a five-quark effective theory that describes the essential properties of weak
and strong interactions in a state-independent way. Sec. 2.2 shows the application and
evaluation of this theory for the investigated B meson decay. Thereafter, Sec. 2.4 gives
a summary of recently made predictions and measurements.

2.1 Effective Theory

The most basic description of a B meson decay is a tree-level W exchange between two
left-handed quark currents (see Sec. 1.1.1)

Jq2q1 = q̄2 γµ (1− γ5) q1 .1 (2.1)

The amplitude

A = i
GF√

2
V ∗qbVqd

M2
W

p′2 −M2
W

JdqJqb (2.2)

of the transition b → qqd, for instance, is given for q = u, c in first order perturbation
theory by the Fermi constant GF [3], the CKM matrix elements Vqb and Vqd (see Sec.

1Since q̄2 γµ q1 is a vector, while q̄2 γµγ5 q1 is an axial vector [3], J is called a “V −A” current.
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1.1.1), the mass MW of the W boson and the momentum transfer p. Since the mass mb

of the b quark sets p2 = O(m2
b), but MW À mb, the W propagator in Eq. 2.2 can be

expanded into
M2
W

p2 −M2
W

= −
∞∑

n=0

(
p2

M2
W

)n

, (2.3)

yielding in leading order the amplitude

A = −i GF√
2
V ∗qbVqd JdqJqb . (2.4)

It is natural to relate this amplitude to an effective Hamiltonian

Heff =
GF√

2

∑
q=u,c

ξq O
(q) (2.5)

built from CKM factors
ξq = V ∗qbVqd (2.6)

and local2 current-current operators

O(q) = JdqJqb . (2.7)

The expression of the Hamiltonian in terms of local operators is known as operator
product expansion [16]. In a generalized form, it states

Heff =
GF√

2

∑

i

Ci
∑
qi

ξq O
(q)
i , (2.8)

introducing the Wilson coefficients Ci. The benefit of this parameterization is that
the Wilson coefficients do not depend on the external states and can absorb quantum
corrections to the transition amplitude. The most sizable corrections come from quantum
chromo-dynamics (QCD), i.e. the strong interactions between the quarks. To determine
all relevant Ci, the effective amplitude (Eq. 2.4) is “matched” to the full amplitude (Eq.
2.2) in first order perturbation theory including the QCD corrections sketched in Fig.
2.1. The presence of gluon links between the quark currents in Eq. 2.7 distinguishes the
color structures of the operators

O
(q)
1 =

∑

ij

JdiqjJqjbi , (2.9)

O
(q)
2 =

∑

ij

JdiqiJqjbj , (2.10)

where i, j = r, g, b are color indices.

Since the application of perturbation theory involves an expansion in the strong cou-
pling constant αs, it is only justified for αs ¿ 1. Due to the property of asymptotic
freedom [3], this condition is satisfied for strong interactions at short distances. While
the energy scale mb gives the W boson a virtuality so high that the weak interaction of

2The term “local” refers to the absence of the propagator.
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d u, c
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Figure 2.1 First order QCD corrections to the current-current operators O(u) and O(c) (Eq.
2.7). The crossed circles represent effective vertices. Gluon links between the currents distinguish
the color structures of the operators O1 and O2 (Eq. 2.9 and 2.10).

the quarks becomes local, the corresponding virtualities of the gluons are much smaller,
and the strong interactions have a finite distance. Since even lower scales drive αs > 1,
it is desirable to restrict the Wilson coefficients to short-distance QCD corrections, while
including long-distance QCD effects in the matrix elements of the local operators. For-
mally, the removal of the W boson from the full amplitude (Eq. 2.2) constitutes an
integration over a (virtual) momentum p′, where the splitting

M2
W∫

−p2

dp′2

p′2
=

M2
W∫

µ2

dp′2

p′2
+

µ2∫

−p2

dp′2

p′2
(2.11)

ln
M2
W

−p2
= ln

M2
W

µ2
+ ln

µ2

−p2
(2.12)

at µ2 = O(m2
b) separates the energy scales mb . . .MW and 0 . . .mb. The factorization of

Eq. 2.8 is achieved at first order in αs by [17]

1 +Gαs ln
M2
W

−p2
=

(
1 +Gαs ln

M2
W

µ2

)(
1 +Gαs ln

µ2

−p2

)
, (2.13)

where G is an appropriate compound term. Apparently, both the Wilson coefficients
and the local operators depend on the splitting scale µ. Since µ is also the proper
renormalization scale, but the perturbation theory applied is renormalized at the scale
MW , the Wilson coefficients have to be readjusted. On the contrary, the adjusted
expansion parameter αs(µ) ln(MW /µ) ≈ 1 spoils the perturbation series. It turns out
that both problems can be solved by the renormalization group. First it resums all
orders n of perturbation theory to order m of the improved expansion parameter

αms

∞∑

n=0

(
αs ln

MW

µ

)n

, (2.14)

then it evolves the Wilson coefficients by a matrix equation

Ci(µ) =
∑

j

Uij Cj(MW ) (2.15)



36 2 The Decay B0 → ηφ

of the desired “logarithmic” order [17].3

So far, the effective Hamiltonian (Eq. 2.8) includes two current-current operators (Eq. 2.9
and 2.10) with renormalization group improved Wilson coefficients. However, first order
QCD corrections generate additional operators, as shown in Fig. 2.2. These operators
are characterized by an internal quark loop, which due to the mass dependence of the
transition amplitudes [9] is dominated by a (virtual) top quark. Inspired by its shape,
Fig. 2.2(a) is called a “penguin diagram”.4 The “penguin operators” have the standard
representations

O
(t)
3 =

∑

q=u,d,s,c,b

∑

ij

JdibiJqjqj , (2.16)

O
(t)
4 =

∑

q=u,d,s,c,b

∑

ij

JdibjJqjqi , (2.17)

O
(t)
5 =

∑

q=u,d,s,c,b

∑

ij

JdibiJ
′
qjqj , (2.18)

O
(t)
6 =

∑

q=u,d,s,c,b

∑

ij

JdibjJ
′
qjqi , (2.19)

where i, j = r, g, b are again color indices and

J ′q2q1 = q̄2 γµ (1 + γ5) q1 (2.20)

is a right-handed quark current.5 In Fig. 2.2(b) the top quark with a mass mt À mb

is removed by the operator product expansion (Eq. 2.3), leaving a five-quark effective
theory.

t t

b d

q q

(a)

b d

q q

(b)

Figure 2.2 First order QCD correction generating the penguin operators O3 to O6 (Eq. 2.16
to 2.19) before (a) and after (b) integrating out the top quark. The crossed circles represent
effective vertices.

3Representations of Uij and Wilson coefficients for the leading and next-to-leading logarithmic order
can be found in [17].

4The name “penguin diagram” was first used by J. R. Ellis on page 12 of [18]. After he had “smoked
some illegal substance”, he found the diagram appropriate to redeem a dart bet by using the word
“penguin” in one of his publications [19].

5Since q does not couple to the W boson, its current has a left-handed (“V −A”) and a right-handed
(“V +A”) component (see also footnote 1 on page 33).
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2.2 Decay Amplitude

Neutral B mesons are formed from b and d quarks in the states

|B0〉 = |db〉 , (2.21)
|B0〉 = |bd〉 . (2.22)

This analysis searches for the decay of |B0〉 or |B0〉 into the state |ηφ〉, where

|η〉 =
1√
6

(|uu〉+ |dd〉 − 2|ss〉) (2.23)

is part of the nonet of pseudoscalar mesons and

|φ〉 = |ss〉 (2.24)

is part of the nonet of vector mesons formed from u, d and s quarks [3]. This decay is
described in lowest order perturbation theory by the three Feynman diagrams shown in
Fig. 2.3. In the five-quark effective theory outlined in Sec. 2.1, these diagrams exclu-
sively generate penguin operators (Eq. 2.16 to 2.19), and B0 → ηφ is a “pure penguin
decay”. Note, however, that a minimum of three gluons is needed in Fig. 2.3(c) to pro-
duce the |ss〉 state as a color singlet with spin j = 1 [3]. Since these gluons also carry
the full momentum of the φ meson, their coupling is suppressed by the OZI rule [3].
In Fig. 2.3(a) and (b), the gluons are replaced by either a photon or a Z0 boson. In
a coarse comparison of the strong coupling O(α3

s) at the b quark mass with the elec-
troweak coupling O(α) these diagrams contribute 10 – 50% to the transition amplitude.
Hence, additional “electroweak penguin operators” O7 –O10 have to be considered in the
effective Hamiltonian (Eq. 2.8). Because Eq. 2.15 “mixes” the structures of all addends,
these operators are up to a factor 3/2 identical to the operators O3 –O6 (Eq. 2.16 – 2.19).

A determination of the decay amplitude

A = −i 〈φη|Heff |B0〉 (2.25)

requires the evaluation of the matrix elements

Mi = 〈φη|O(t)
i |B0〉 (2.26)

of the local operators i = 3 . . . 10. However, this is simplified by exploiting relations
between them. Firstly, the “color-mismatched” matrix elements M4,M6,M8,M10 are
suppressed by the number of colors Nc with respect to the “color-matched” matrix
elements M3,M5,M7,M9. Secondly, the “V −A” currents Jss in M3,M4,M9,M10 and
the “V +A” currents J ′ss in M5,M6,M7,M8 contribute equal amounts. Hence, the
amplitude can be expressed as

A = −i GF√
2
V ∗tbVtd

(
a4 + a6 +

3
2
a8 +

3
2
a10

)
M3 , (2.27)

where
a2i ≡ C2i−1 +

1
Nc
C2i (2.28)
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Figure 2.3 Lowest order Feynman di-
agrams for the decay B0 → ηφ. The
pure penguin transition b→ ssd has elec-
troweak (a,b) and strong (c) contribu-
tions. The external d quark acts as spec-
tator.

and

M3 =
Nc∑

i=1

Nc∑

j=1

〈φη|JdibiJsjsj |B0〉 . (2.29)

Since the matrix elements, which describe the long-distance strong interactions of the
quarks, cannot be expanded in the strong coupling constant αs (see Sec. 2.1), the usual
approach is to expand them in the inverse number of colors 1/Nc and drop all non-leading
terms. This, of course, is an approximation that has to be justified by measurements.
Indeed, a comparison of hadronic and semileptonic B meson decays [20] suggests a value
Nc →∞. In the theory of the 1/Nc expansion [21], this has important implications:

• Decays of mesons containing a heavy and a light quark are only determined by the
heavy “valence quark”. The light quark acts as external “spectator”.

• The decay matrix elements factorize into simple single-current matrix elements.

• All interactions between the final states vanish.

As a consequence, the matrix element M3 (Eq. 2.29) factorizes as

〈φη|JdbJss|B0〉 = 〈φ|Jss|0〉〈η|Jdb|B0〉 . (2.30)

The remaining single-current matrix elements are further decomposed into form factors
that have to be calculated in a chosen physics model.
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2.3 Experimental Importance

The study of pure penguin decays is essential to the physics program of the BABAR

experiment. As outlined in Sec. 1.1.3, the search for new physics is an important part
of this program. Penguin transitions are especially sensitive to undiscovered particles
because highly virtual particles can even occur in the internal loop. Popular candidates
for such particles come from additional fermion families, extended Higgs fields or super-
symmetry partners [7]. While penguin transitions contribute to most decays, they are
usually suppressed by coupling constants and CKM matrix elements. In pure penguin
decays, however, even smallest effects of new physics become visible.

Conclusions about penguin amplitudes also benefit the understanding of decays with
penguin contributions. An especially interesting aspect is the interference of “weak”
phases ϕi from CKM matrix elements and “strong” phases δi from the matrix elements
of “magnetic” penguin operators [17]. For i participating transition amplitudes, the
decay amplitude takes the form

A =
∑

i

Ai e
i(ϕi + δi) . (2.31)

Since the weak phases change their sign under CP conjugation, while the strong phases
remain unchanged, the CP conjugate amplitude Ā generally differs by

|A|2 − ∣∣Ā∣∣2 = −2
∑

ij

AiAj sin(ϕi − ϕj) sin(δi − δj) . (2.32)

In the classification given in Sec. 1.1.2, penguin amplitudes are a source of CP violation
in B meson decays. This fact was proven by the observation of CP violation in the decay
B0 → K+π− at the BABAR experiment [22].

Finally, CP violation in the interference of B0B0 mixing and B0 decays is also influenced
by penguin amplitudes. The time-dependent CP asymmetry (Eq. 1.11 and 1.12) of the
decays B0 → ππ and B0 → ρρ, for instance, measures the angle α (Eq. 1.5) of the
Unitarity Triangle. The penguin and tree amplitudes of these decays compete because
the involved CKM matrix elements Vub and Vtd (Eq. 1.2 and 1.3) are of the same order
of magnitude. Since only the tree amplitudes are color-matched in the charged channels
B0 → π+π− and B0 → ρ+ρ−, while only the penguin amplitudes are color-matched in
the neutral channels B0 → π0π0 and B0 → ρ0ρ0, a comparison of the decay rates in
these channels helps estimate the “penguin pollution” of a measurement of α. The BABAR

collaboration has refined this estimate by the observation of the decay B0 → ρ+ρ− [23]
and the reduction of the uncertainty on the unobserved decay B0 → ρ0ρ0 [24]. While
these results hint on a rather small penguin amplitude, the BABAR collaboration has
observed an unexpectedly large rate for the decay B0 → π0π0 [25]. This puzzle is proof
for the utility of studying penguin amplitudes under the clean conditions of pure penguin
decays.

2.4 Predictions and Measurements

The theoretical predictions for the branching fraction B(B0 → ηφ) presented here are
based on the effective Hamiltonian for b quark transitions developed in [26]. The
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renormalization group improved Wilson coefficients (Eq. 2.15) are calculated in next-
to-leading logarithmic order so as to

• test the validity of the perturbation theory applied,

• make the renormalization scale and scheme dependences explicit and

• gain sensitivity for the mass of the (virtual) top quark.

As an additional feature, the two-loop QCD applied yields non-vanishing values for the
Wilson coefficients of the color-matched penguin operators O3 and O5 (Eq. 2.16 and
2.18). This was first reported in 1993 by Du and Xing [27] who called Fig. 2.3 the
“hairpin diagram”. For evaluation of the matrix element M3 (Eq. 2.29) these authors
use the form factors calculated by Bauer, Stech and Wirbel [28] from relativistic oscillator
potentials. They cite branching fractions for Nc = 3 and Nc = ∞, which are listed in
Tab. 2.1.

A different set of form factors for M3 was used by Deandrea et al. in 1994 [29]. It had
previously been derived by the same authors from heavy quark spin-flavor symmetry,
chiral symmetry and the hidden symmetry approach for light vector resonances [30].
The authors point out that the factorization approximation carries large uncertainties
and give the branching fractions for Nc = 2, Nc = 3 and Nc = ∞ listed in Tab. 2.1.
After electroweak penguin operators had been included in the effective Hamiltonian [31],
they were first applied to B meson decays by Du and Guo in 1997 [32]. Relying again
on the form factors from Bauer, Stech and Wirbel, they find electroweak contributions
to the transition amplitude of −33% for Nc = 2 and +18% for Nc = ∞, leading to the
branching fractions listed in Tab. 2.1.

B(B0 → ηφ)

Nc = 2 Nc = 3 Nc = ∞

Du, Xing (1993) 1.5 ×10−11 1.0 ×10−7

Deandrea et al. (1994) 1.30×10−8 8.55×10−12 4.8 ×10−8

Du, Guo (1997) 6.11×10−9 7.73×10−8

Table 2.1 Theoretical predictions for the branching fraction B(B0 → ηφ).

Although theoretical uncertainties are difficult to estimate, there are a number of uncer-
tain parameters that enter the calculations. Beyond the effective number of colors Nc,
large contributions come from the scale dependence of the Wilson coefficients and the
uncertainties on the quark masses. It should also be kept in mind that the factorization
approximation itself, including the valence quark approximation and the neglect of final
state interactions, depends on the value of Nc. Finally, there are “annihilation” diagrams
of leading order in 1/Nc which are neglected in the calculations because of a suppression
by the B meson mass [21].
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In a recent measurement [33], the CLEO collaboration gives an upper limit of B(B0 →
ηφ) < 9× 10−6 (90%). Although this result is consistent with all theoretical predictions
in Tab. 2.1, it is desirable to reduce the experimental uncertainty with the increased
integrated luminosity and the improved experimental opportunities of the BABAR exper-
iment.





Chapter 3

Data Analysis

This chapter explains the analysis in which the data acquired in the first two years of the
BABAR experiment are examined for the decay B0 → ηφ. The successful identification
of this rare decay requires a thorough investigation of its experimental signature and an
efficient technique for its reconstruction. It has been shown in previous chapters that the
BABAR experiment provides an excellent environment for meeting these requirements.

The overall strategy of the analysis is outlined in Sec. 3.1, while Sec. 3.2 describes the
individual data samples and Sec. 3.3 introduces all analysis specific variables. Sec. 3.4
covers the event reconstruction in the BABAR software infrastructure, before Sec. 3.5
takes a first look at the obtained physics content. In Sec. 3.6 and 3.7, two different
methods of separating signal events from background contributions are discussed. Sec.
3.8 summarizes the systematic uncertainties, and Sec. 3.9 presents the final results.

An elementary feature of the presented analysis is the blinding of the measurements
until the calibration of the employed methods is completed. This procedure assures that
no statistical degrees of freedom can be used to impose an experimenter’s bias. As a
consequence, it is only at the very end of this chapter that the actual “unblinded” results
are shown.

3.1 Analysis Strategy

In order to identify instances of the considered decay B0 → ηφ, the BABAR data are
examined for its detectable products. Special care is taken for a proper separation
of detected decays from the products of similar background processes. A set of basic
formulae is then used to translate the observations into decay branching fractions with
well-defined uncertainties.

3.1.1 Candidate Construction

This analysis uses BB meson pairs produced at the Υ (4S) resonance and follows the
convention B(Υ (4S) → B0B0)/B(Υ (4S) → B+B−) = 0.5 for the branching ratio of B0B0

and B+B− production. The detected products of the B meson decays are combined
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to “candidates” for the resonances in the “signal” decay B0 → ηφ. η candidates are
reconstructed in the two channels η → γγ and η → π+π−π0, with the branching fraction
B(π0 → γγ) = 1 assumed for the π0 meson decay, while φ candidates are reconstructed
in the channel φ → K+K−. The branching fractions of the η and φ meson decays are
provided by the Particle Data Group [8] and summarized in Tab. 3.1.

B

η → γγ 0.3943± 0.0026

η → π+π−π0 0.226 ± 0.004

φ→ K+K− 0.492 ± 0.007

Table 3.1 Branching fractions B of decay channels.

There are two different types of “background” in the reconstructed B0 decays:

BB Background B0 candidates made from the products of non-signal B decays in
BB events and

qq Background B0 candidates made from the products of quark fragmentation in
continuum qq events.

In addition, the η candidates include “background” photons from interactions of natural,
beam or event generated particles with the detector material.

3.1.2 Branching Fraction Calculation

The branching fraction

B(B0 → ηφ) =
S

εS BchNB0

(3.1)

is calculated from the measured number of signal B0 candidates S, the signal selec-
tion efficiency εS , the number of processed B0 mesons NB0 and the channel branching
fractions Bch, which evaluate to

Bch = B(φ→ K+K−)B(η → γγ) (3.2)

in the channel η → γγ and

Bch = B(φ→ K+K−)B(η → π+π−π0) (3.3)

in the channel η → π+π−π0. S is measured in two different ways:

Candidate Counting Selective cuts are applied on kinematic and topological vari-
ables, and the remaining B0 candidates are counted.

Maximum Likelihood Signal and background components are separated by a global
maximum-likelihood fit to the distributions of these variables.
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S is called a “significant” signal if it excludes 0 with five standard deviations σS. If
no significant signal is found, an upper limit Bε(B0 → ηφ) on the branching fraction
is calculated from the upper limit Sε on the mean value of S. Relying on Bayesian
statistics [34],

1− ε =

Sε∫

0

fS(S|S)dS (3.4)

is the probability for S with the conditional probability density fS(S|S) to lie between
0 and Sε. It can be calculated from the known conditional probability density fS(S|S)
and Bayes’ theorem by [35]

1− ε =

Sε∫
0

fS(S|S)dS

∞∫
0

fS(S|S)dS
. (3.5)

In this picture, using Eq. 3.1 with the requirement

1− ε =

Bε∫

0

fB(B|S)dB (3.6)

for the conditional probability density fB(B|S) of the branching fraction B(B0 → ηφ)
gives the upper limit

Bε(B0 → ηφ) =
Sε

εS BchNB0

. (3.7)

In the concurrent frequentist interpretation [34], ε is the fraction of identical experiments
that would measure a value greater than S if the mean value was Sε. The frequentist
limits follow from construction, as published by Feldman and Cousins in [36]. In this
analysis, BBay denotes branching fractions under the Bayesian limit, and BFC denotes
branching fractions under the Feldman–Cousins limit. All limits are cited at a confidence
level (c.l.) of 1− ε = 90%.

3.1.3 Uncertainty Estimation

Systematic uncertainties are derived from the deviation of two measurements beyond
their statistical uncertainties. If the measurements n1 and n2 have the statistical un-
certainties σn1

and σn2
, the level of confidence (c.l.) that both measurements follow the

same distribution of n is approximated by the Gaussian integral

1− ε = e
− (n1−n2)2

2 (σ2
n1

+σ2
n2

) . (3.8)

If 1 − ε is smaller than the desired level 1 − ε′, the systematic uncertainty on all mea-
surements of n is estimated by

∆n =

√
− (n1 − n2)

2

2 log (1− ε′)
− (

σ2
n1

+ σ2
n2

)
. (3.9)

All systematic uncertainties are cited for 1− ε′ = 32%.
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3.2 Data Samples

This analysis is based on data collected by BABAR between November 1999 and July
2002. An integrated luminosity of (81.62± 0.98) fb−1 recorded “on peak” of the Υ (4S)
resonance delivers (85.7 ± 1.0) × 106 BB events at a cross section of 1.05 nb [7] and
(276.7± 3.3)× 106 qq events at a cross section of 3.39 nb [7]. Another (9.61± 0.12) fb−1

recorded approximately 40 MeV “off peak” deliver (32.58± 0.39)× 106 qq events at the
same cross section. These samples contain all events marked isPhysics in the detector
runs 1 and 2. For comparison, the integrated luminosities recorded until November 2004
are shown in Fig. 3.1.
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Figure 3.1 Integrated luminosity delivered by PEP-II, recorded by BABAR and recorded by
BABAR off-peak. This analysis uses data collected between November 1999 and July 2002.

Simulated data events come from the BABAR Monte Carlo [35] simulation production 4.
They include 39×103 B0B0 events with signal B0 decays in the channel η → γγ, 37×103

B0B0 events with signal B0 decays in the channel η → π+π−π0 and 109×106 BB events
with generic B decays. While the BB Monte Carlo sample simulates BB background,
the off-peak data sample entirely contains qq background. Although the off-peak energy
shift entails systematic uncertainties, the use of collected data is generally more reliable
than the use of Monte Carlo samples.

With the “BB counting” from an inclusive analysis of hadronic BB events [37], the
expected number of BB events in the data sample is (88.58± 0.98)× 106. Assuming the
CLEO upper limit on the branching fraction B(B0 → ηφ) [33], the expected number of
signal B0 decays in the data sample

N̂B0(B0 → ηφ) = NBB B(B0 → ηφ) 1 (3.10)
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is limited to N̂B0(B0 → ηφ) < 797.2 ± 8.8 (90%). Scaling by the channel branching
fractions in Tab. 3.1 gives the upper limits in each channel listed in Tab. 3.2.

N̂B0(B0 → ηφ)

η → γγ < 154.6± 3.0

η → π+π−π0 < 88.6± 2.2

Table 3.2 Upper limits on the number of expected signal B0 decays N̂B0(B0 → ηφ) in the
channels η → γγ and η → π+π−π0 at 90% c.l.

3.3 Event Variables

To separate signal B0 decays from background processes, two classes of event variables
are employed. “Kinematic” variables are evaluated from the measured energies and
momenta and describe the masses of the constructed candidates. The variables for
the mass of the B0 candidates used in this analysis are defined in Sec. 3.3.1. Other
variables that exploit the different topologies2 of signal and background processes include
the angular distributions in production and decay of B mesons. These “topological”
variables are discussed in Sec. 3.3.2 to 3.3.6.

3.3.1 Kinematic Variables

BB events in beam collisions are described in this analysis by the decorrelated variables
mES and ∆E [38]. These variables exploit the kinematic information of both the recon-
structed and the recoil B meson by constraining their masses with event parameters.

The energy difference
∆E = E∗B − 1

2E
∗
0 (3.11)

measures the difference between the masses of both B mesons. It is calculated in the
center-of-mass system of the beams from the beam energy E∗0 and the energy E∗B of the
reconstructed meson. For correctly reconstructed B mesons, ∆E only deviates from 0
by the B meson mass resolution. For reconstructed background processes, however, the
deviation is arbitrary.

The energy substituted mass

mES =
√

(1
2E

∗
0)2 − p∗B

2 (3.12)

measures the mass of both B mesons under the assumption ∆E = 0. It is calculated in
the center-of-mass system of the beams from the beam energy E∗0 and the momentum

1In this calculation, the assumed branching ratio B(Υ (4S) → B0B0)/B(Υ (4S) → B+B−) and the
B0B0 multiplicity cancel to 1.

2This is synonymous with “event shape”.
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p∗B of the reconstructed meson. To avoid boosting the measured momentum pB into the
center-of-mass system of the beams, the modified expression

mES =

√
(1
2E

∗
0
2 + p0 · pB)2

E0
2 − pB2 (3.13)

is used for computation. It is evaluated in the laboratory system using the beam energy
E0 and the beam momentum p0. For correctly reconstructed B mesons, mES varies
within the B meson mass resolution, while for reconstructed background processes it is
free below E∗0 . To compensate the energy shift in off-peak data, mES is increased by the
difference of the Υ (4S) resonance mass and E∗0 .

3.3.2 Helicity Formalism

In the following, transition amplitudes are evaluated in the helicity basis [39]. The
“helicity”

λ =
s · p
|p| (3.14)

of a particle is the component of its spin s along its momentum p. Since the orbital
angular momentum l = r×p is perpendicular to the momentum, any two-particle state
with total angular momentum j quantized along the momentum p1 is defined in its
center-of-mass system by the two helicities λ1 and λ2.3 Denoting this state |j(λ1−λ2)〉,
it may result from the spin state |jm〉, which is quantized along the z axis. Fig. 3.2
illustrates both states. The amplitude for the transition from |jm〉 to |j(λ1−λ2)〉 is
given by [39]

Am,λ1λ2(Ω) =

√
2j + 1

4π
Aλ1λ2 D

j ∗
m,λ1−λ2

(Ω) , (3.15)

where Aλ1λ2 is the helicity amplitude for this process and Dj ∗
m,λ1−λ2

(Ω) constitutes a
rotation by Ω = (ϑ, ϕ). For the definition of Ω see Fig. 3.2. By squaring Eq. 3.15 and
choosing the representation

Dj
m,m′(Ω) = e−iϕm djm,m′(ϑ) eiϕm

′
(3.16)

by the tabulated [8] real-valued “d” function djm,m′(ϑ), the differential rate for this
transition in the angle element dΩ = dcosϑdϕ and the remaining phase-space element
dΦ is found to be

dΓm,λ1λ2(Ω,Φ) =
2j + 1

4π
|Aλ1λ2 |2

∣∣∣djm,λ1−λ2
(ϑ)

∣∣∣
2
dΩdΦ . (3.17)

Integrating over Φ and ϕ and summing over all helicities λ1λ2 gives the angular distri-
bution

1
Γm

dΓm(ϑ)
dcosϑ

=
Φ
Γm

2j + 1
2

∑

λ1λ2

|Aλ1λ2 |2
∣∣∣djm,λ1−λ2

(ϑ)
∣∣∣
2

(3.18)

of the final state with respect to z.
3j and m are quantum numbers. In this context λ is also used as a quantum number.
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1
p

p
2

λ 2

λ 1

z

ϕ

m
ϑ Figure 3.2 States

∣∣jm〉
(quantized along z)

and
∣∣j(λ1−λ2)

〉
(quantized along p1) in their

common center-of-mass system. The transi-
tion from

∣∣jm〉
to

∣∣j(λ1−λ2)
〉

constitutes a
rotation from z to p1.

3.3.3 Momentum and Thrust

The beams are polarized to produce intermediate bosons in the spin state |jm〉 = |11〉
with respect to the beam axis. Since B mesons are spin states |jsλ〉 = |00〉, the only
helicity amplitude for BB pair production is A00. According to Eq. 3.18, the angular
distribution of the B momentum has the shape

∣∣d1
1,0(ϑ)

∣∣2 =
1− cos2 ϑ

2
. (3.19)

Non-b quark pairs produced in the continuum involve two spins |jsλ〉 = |12 ± 1
2〉 and four

possible helicity amplitudes A++, A+−, A−+, A−−. Evaluating the electroweak vertex
with the quark mass mq and the center-of-mass energy E0, one finds that the amplitudes
A++ and A−− are proportional to mq, while A+− and A−+ are proportional to E0 +
O(m2

q/E
2
0) [40]. Since E0 À mq, continuum quark pair production is dominated by

A++ and A−−, and Eq. 3.18 gives the shape of the angular distribution of the quark
momentum by

∣∣d1
1,1(ϑ)

∣∣2 +
∣∣d1

1,−1(ϑ)
∣∣2 =

1 + cos2 ϑ
2

. (3.20)

The condition E0 À mq also implies that the continuum quarks have high momenta
that boost all subsequent processes into isolated jets. This stands in contrast to B
mesons, which are produced close to rest at E0 ≈ 2mB and decay spherically. However,
continuum quark events contain no B mesons, and all B candidates must be (artificially)
constructed from the jets. A jet event with a constructed B candidate is illustrated in
Fig. 3.3.

Let p1 and p2 be momenta in the jets. Given by the angle between p1 and p2, the
momentum

p0 = p1 + p2 (3.21)

of the B candidate has an arbitrary direction. To recover the direction of the original
quark momenta, we follow the procedure proposed in [41]: For every unit vector et,

t =
∑

i=1,2

|pi · et| (3.22)
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p 2

p 0

p 1

t

z

Figure 3.3 Continuum qq event with a constructed B candidate. p1 and p2 are momenta in
the jets. p0 is the momentum, and t is the thrust momentum of the B candidate. z is the beam
axis.

is the sum of magnitudes of all projections pi · et. The “thrust momentum” is then
defined by the vector t = t et for which

t→ max . (3.23)

With p+ being the sum of all momenta with positive projections, Eq. 3.22 implies that
t = (2p+−p0) ·et. To satisfy Eq. 3.23, we adjust et parallel to 2p+−p0 and obtain the
thrust momentum

t = 2p+ − p0 .
4 (3.24)

If p1 and p2 enclose an angle α < π
2 , both will have positive projections, and Eq. 3.24

becomes
t(α < π

2 ) = p1 + p2 . (3.25)

If p1 and p2 enclose an angle α ≥ π
2 , only one will have a positive projection, and for

|p1| > |p2| Eq. 3.24 becomes
t(α ≥ π

2 ) = p1 − p2 . (3.26)

While in continuum quark events the thrust momentum is aligned to the momenta of the
originally produced quarks, in BB events it is aligned to the momenta of the B decay
products, which have arbitrary directions. The angular distributions of the momentum
and the thrust momentum of the B0 candidates in the signal Monte Carlo, the BB
Monte Carlo and the off-peak data sample for the channel η → γγ are shown in Fig.
3.4. The distributions from Eq. 3.19 and 3.20 are found for the momentum in the signal
Monte Carlo and for the thrust momentum in the off-peak data sample. The thrust
momentum generally disappears at small angles due to the limited detector acceptance.

3.3.4 Momentum Flow

Utilizing the newly defined thrust momentum, the space around it is divided into nine
cones, each of which covers an angle ∆ϑ = π

18 . The first three of these cones are shown

4 [41] assumes p0 = 0 and calls p+ the “principal momentum”.
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Figure 3.4 Angular distributions of the momentum (left) and the thrust momentum (right)
of the B0 candidates in the signal Monte Carlo, BB Monte Carlo and off-peak data sample for
the channel η → γγ. All frequencies are scaled against the signal Monte Carlo sample.

in Fig. 3.5. All nine cones cover ∆ϑ = π
2 , with the space beyond being mirrored into

them. The momentum flow

pi =
∑

j

|pij | (3.27)

is defined as the scalar sum of all momenta pij found inside the ith cone. Fig. 3.6 shows
the distributions of the momentum flows p1, p5 and p9 in the signal Monte Carlo and
the off-peak data sample for the channel η → γγ. While in the spherical B decays all
cones have similar momentum flows, in jet events the momentum flows decrease as the
cones move away from the jet axis.

ϑ

t

Figure 3.5 First three cones around the
thrust momentum t. Each cone covers an an-
gle ∆ϑ = π

18 .
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Figure 3.6 Distributions of momentum flows in cone 1, 5, and 9 in the signal Monte Carlo
(left) and the off-peak data (right) sample for the channel η → γγ. The ordinate is logarithmic.

3.3.5 Fisher Discriminant

Since the variables discussed in Sec. 3.3.3 and 3.3.4 are partially correlated, they are
used in combinations. The linear combination

F = c · x (3.28)

of all variables x that maximizes the separation between two categories of events is called
the Fisher discriminant [42]. The separation is expressed in terms of the difference D
between the values in the categories 1, 2. With the mean value

D = F1 −F2 (3.29)

and the variance
sD = sF1

+ sF2
, (3.30)

the separation is given by D/σD. The criterion for maximum separation is

D2

sD
→ max , (3.31)

which leads to the condition

D
s2D

[
2 sD

∂D
∂c

−D∂sD
∂c

]
= 0 . (3.32)

Since
D = c · (x1 − x2) (3.33)

and
sD = c (S1 + S2) c , (3.34)
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with S1,2 being the covariance matrices in both categories, the sought coefficients c must
be proportional to those in

x1 − x2 = (S1 + S2) c . (3.35)

Hence, they are given by

c ∼ (S1 + S2)
−1 (x1 − x2) . (3.36)

Following the spirit of the CLEO experiment [43], we form a Fisher discriminant from

• the magnitude of the cosine of the angle of the B0 momentum,

• the magnitude of the cosine of the angle of the B0 thrust momentum and

• the nine momentum flows around the B0 thrust momentum,

calculated in the center-of-mass system of the beams with respect to the beam axis.

Two different sets of Fisher coefficients are considered. Set c1 was optimized in [44]
for separation between B+ → ωK+ Monte Carlo and off-peak data events. Set c2 is
optimized for separation between B0 → ηφ Monte Carlo and off-peak data events in each
of the channels η → γγ and η → π+π−π0. Both sets are computed with the Cornelius++
package [45, 46] from 1000 – 3000 events in each category. The resulting parameters of
the discriminant in the B0 → ηφ Monte Carlo and the off-peak data sample and the
achieved separations are listed in Tab. 3.3. It is evident that the optimization for the
B0 → ηφ Monte Carlo sample does not improve the separation. An equivalent behavior
was already observed in [43]. As a consequence, this analysis uses the coefficient set c1.

η → γγ η → π+π−π0

c1 c2 c1 c2

signal
F −0.354± 0.011 −0.413± 0.007 −0.325± 0.011 −0.561± 0.009

σF 0.575± 0.011 0.390± 0.007 0.642± 0.011 0.522± 0.009

qq
F 0.596± 0.014 0.099± 0.008 0.655± 0.013 0.139± 0.010

σF 0.715± 0.014 0.418± 0.008 0.739± 0.013 0.566± 0.010

D/σD 1.036± 0.019 0.895± 0.019 1.002± 0.017 0.908± 0.017

Table 3.3 Mean values F , standard deviations σF and separations D/σD of the Fisher dis-
criminant in the B0 → ηφ (signal) Monte Carlo and off-peak (qq) data sample for the channels
η → γγ and η → π+π−π0 for coefficient sets c1 (optimized for B+ → ωK+) and c2 (optimized
for B0 → ηφ).
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3.3.6 Helicity Angle

Finally, the helicity formalism is used to calculate the decay angles of the intermediate
B0 decay products. The starting point is the rest frame of the B0 meson, where the total
angular momentum j = 0. While η mesons are spin states |jsλ〉 = |00〉, φ mesons occur
in the states |jsλ〉 = |1 −1〉, |10〉, |1 +1〉. However, the orbital angular momentum of the
η and the φ meson, which must compensate the spin of the φ meson, is perpendicular to
the momenta of both mesons. Thus, the φ meson must occur in the state |jsλ〉 = |10〉,5
with its spin perpendicular to its momentum. If we choose its momentum as quantization
axis and move into its rest frame, the decay of the φ meson is described by the two kaon
spin states |jsλ〉 = |00〉. The angle of the kaon momentum is now measured between
the kaon momentum in the φ meson rest frame and the φ meson momentum in the B0

meson rest frame. This angle, shown in Fig. 3.7, is called the “helicity angle” ϑλ. Eq.
3.18 demands that its distribution has the shape

∣∣d1
0,0(ϑ)

∣∣2 = cos2 ϑ . (3.37)

Again, this shape is expected for correctly reconstructed B0 mesons, whereas B0 candi-
dates from background processes do not correspond to real mesons.

ϑλ

ϑλ

B 0

φ

s

l

η

Figure 3.7 Helicity angles ϑλ of the η and the φ meson in the decay B0 → ηφ. The η meson
decays into two photons, and the φ meson decays into two kaons. The η helicity angle is measured
between the η momentum in the B0 rest frame and the photon momentum in the η rest frame.
The φ helicity angle is measured between the φ momentum in the B0 rest frame and the kaon
momentum in the φ rest frame. Because the orbital angular momentum l of the η and the φ
meson is perpendicular to both their momenta, the spin s of the φ meson is perpendicular to its
momentum.

In the fundamental case of the decay of a spin state |jsλ〉 = |00〉 we expect the angular
distribution of the decay products to be flat. This applies to both the η and the π0

meson. However, here the decay products are hard photons, while background photons
are typically soft. If one photon candidate corresponding to a decay photon and one
photon candidate corresponding to a background photon are combined, their center-of-
mass system will be strongly aligned to the harder photon. Hence, the distribution of

5This is referred to as spin alignment.
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the helicity angles of η and π0 candidates from background processes will rise towards
|cos(ϑλ η)| = 1.

3.4 Event Reconstruction

All data samples are processed with BABAR software release analysis-13b, updated to

• CompositionSequences fdl051003,

• CompositionUtils fdl-061401-anal13,

• BetaMicro yumiceva-06Aug02-ana13,

• BetaPid V00-01-42-01,

• BetaSequences V00-10-09-01,

• BetaTools yumiceva-06Aug02-ana13 and

• BtaMicroSequences V00-01-03-02.

The application is provided by the BetaUser package [45]. Tracks and energy clus-
ters are taken from the BtaGoodTrackSequence. While their construction has been
explained in Sec. 1.2.2 and 1.2.4, their parameters are given in Sec. 3.4.2 and 3.4.3,
respectively. π0 candidates come from the CompPi0Sequence, and η and φ candidates
from the CompMicroSequence. The parameters of these candidates are given in Sec. 3.4.4
to 3.4.6. The CompositionTools package [45] is used to build B0 candidates. Parti-
cle identification is performed in the PidMicroSequence. Data samples are processed at
the Forschungszentrum Karlsruhe, and Monte Carlo samples at the Rutherford Appleton
Laboratory.

3.4.1 Input

All data and Monte Carlo events are fetched from the Kanga [47] event store. Control
files for the input module are generated separately at every site by the skimData tool.
For data reconstruction, a private skim of events containing at least one φ candidate is
produced from the AllEventsKanga stream. This is accomplished by inserting a filter
module, followed by a RooModules output module, into the reconstruction sequence.
Monte Carlo events are read directly from the SPKanga stream. A filter module added
in this case removes signal events from the BB modes.

3.4.2 Tracks

Tracks of charged particles in the vertex tracker or the drift chamber (see Sec. 1.2.2) are
added to the GoodTracksVeryLoose list if they have

• a momentum p ≤ 10GeV/c and
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• a distance of closest approach to the beam spot

– dt ≤ 1.5 cm transversal to the beam axis and

– dl ≤ 10 cm along the beam axis.

They are added to the GoodTracksLoose list if they also have

• a momentum pt ≥ 0.1 GeV/c transversal to the beam axis and

• at least 12 hits in the drift chamber.

By default, tracks are identified as pions. To separate π± from K± candidates, the
kaon identification performed by the PidKaonSMSSelector [48] is used. This selector
combines

• the energy losses per path length in the silicon vertex tracker and the drift chamber
(see Sec. 1.2.2) and

• the number and the angle of the Cherenkov photons in the DIRC (see Sec. 1.2.3)

into likelihoods for pions, kaons and protons. The energy losses are described by Gaus-
sian distributions with mean values from the Bethe–Bloch formula (Eq. 1.21) and mea-
sured resolutions. The Cherenkov angle is described by a Gaussian distribution with
a parameterized mean value and a measured resolution, and the number of Cherenkov
photons is described by a Poisson distribution with tabulated mean values.

To assure their consistency with data, Monte Carlo events are assigned a tracking effi-
ciency correction from the tables provided by the Tracking Efficiency Task Force [49].
For the same reason, the kaon selector is replaced by the efficiency tables provided by
the PID Tools Group [50].

3.4.3 Energy Clusters

Energy clusters are energy depositions in contiguous crystals of the electromagnetic
calorimeter (see Sec. 1.2.4) that are not associated with tracks. The lateral moment of a
cluster of N crystals with distances ri from the cluster centroid and energy depositions
Ei is defined as

Mlat =
Elat

Elat + 25 (E0 + E1)
, (3.38)

where

Elat =
N∑

i=2

r2iEi (3.39)

and E0 and E1 are the two largest energy depositions.

By default, clusters are identified as photons. Photon candidates are added to the Good-
PhotonLoose list if they have

• an energy E ≥ 0.03GeV and
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• a lateral moment Mlat ≤ 0.8.

In Monte Carlo events, the photon energies are smeared with the dilution factors pro-
vided by the Neutrals Analysis Working Group (AWG) [51].

3.4.4 π0 Candidates

Composite π0 candidates are made from two GoodPhotonLoose candidates by the Pi0-
ToGG LooseMass module. They have

• an invariant mass 0.10 ≤ mγγ ≤ 0.16 GeV/c2 and

• an energy Eπ0 ≥ 0.2GeV.

The composite vertex is taken to be the event vertex, the composite mass is set to the
π0 meson mass, and the photon momenta are refitted.

Merged π0 candidates are single energy clusters that are consistent in shape with an
incident π0 meson [52] and not contained in any composite π0 candidate. Their frequen-
cies in the signal Monte Carlo and the data sample for the channel η → π+π−π0 are
1.7% with a relative statistical uncertainty below 5% and a consistency above 32% c.l.
They are therefore ignored in this analysis.

In Monte Carlo events, a certain, but randomly chosen fraction of π0 candidates is
discarded according to the correction factors provided by the Neutrals AWG [51].

3.4.5 η Candidates

η candidates in the channel η → γγ are composed from two GoodPhotonLoose candidates
by the EtaToGG DefaultMass module. They have

• photon energies Eγ ≥ 0.05GeV,

• an invariant mass 0.47 ≤ mγγ ≤ 0.62 GeV/c2 and

• a momentum pπ0 ≥ 0.2 GeV/c.

The composite vertex is taken to be the event vertex, the composite mass is set to the
η meson mass, and the photon momenta are refitted.

η candidates in the channel η → π+π−π0 are composed from two GoodTracksLoose
tracks and one π0 candidate by the EtaToPiPiPi0 Default module. They have

• a composite mass 0.515 ≤ mη ≤ 0.575 GeV/c2.

3.4.6 φ Candidates

φ candidates are composed from one GoodTracksVeryLoose and one GoodTracksLoose
track by the PhiToKK Default module. They have

• a composite mass 0.989 ≤ mφ ≤ 1.049GeV/c2.
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3.4.7 B0 Candidates

B0 candidates are composed from one η and one φ candidate by a CompB0Selector
requiring

• a composite mass 4.5 ≤ mB0 ≤ 6.0GeV/c2 and

• an energy difference |∆E| ≤ 0.05 GeV.

3.4.8 Output

All variables of the reconstructed events are stored in ROOT [53] n-tuples. The tuple
format is managed by the Q2BUser package [45]. Evaluation of PidMicroSequence
particle identification is added to the Q2BUserAnalysis module. Events without B0

candidates are omitted. The stored variables include

• the number of GoodTracksVeryLoose tracks Ntrack,

• the kaon identification iK± of the π± and K± candidates,

• the energy Eγ of the photon candidates,

• the energy substituted mass mES and the energy difference ∆E defined in Sec.
3.3.1,

• the invariant mass mγγ of the π0 candidates in the channel η → π+π−π0 and the
η candidates in the channel η → γγ,

• the composite masses mη of the η candidates in the channel η → π+π−π0 and mφ

of the φ candidates and

• the Fisher discriminant F and the helicity angles ϑλ defined in Sec. 3.3.5 and 3.3.6.

3.5 Event Analysis

The n-tuples defined in Sec. 3.4 are analyzed in a separate ROOT [53] 3.02.07 appli-
cation. First, the Q2BUser n-tuples are converted to a format containing all required
variables in scalar columns and one B0 candidate per row. Events with multiple B0

candidates are treated according to the different approaches discussed in Sec. 3.5.4. At
the same time all cuts on kinematic and topological variables are applied. Next, the
distributions of the variables are extracted. They motivate the range of cuts consid-
ered for candidate counting. To fit probability density functions (p.d.f.), a RooFitCore
V00-00-16 and RooFitModels V00-00-10 package [45, 54] is integrated. Fits of a given
number of parameters are limited to samples that contain at least the same number
of candidates. Values are chosen at maximum likelihood, with prior 100-fold binning
applied to samples containing at least 10000 candidates. The complete set of p.d.f.’s for
the global maximum-likelihood fit is given in App. D.
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Figure 3.8 Distributions of the number of tracks in the signal Monte Carlo, BB Monte Carlo
and off-peak data sample for the channels η → γγ (left) and η → π+π−π0 (right). All frequencies
are scaled against the signal Monte Carlo sample.

3.5.1 Number of Tracks

The distributions of the number of tracks Ntrack are shown in Fig. 3.8. Since the dis-
tributions in the different samples are widely identical, the fixed cuts Ntrack ≥ 3 in the
channel η → γγ and Ntrack ≥ 5 in the channel η → π+π−π0 are applied for all methods.

3.5.2 Kaon Identification

The distributions of the kaon identification iK± of the K± candidates are shown
in Fig. 3.9. The distributions of the kaon identification iK± π± of the π± can-
didates are shown in Fig. 3.10. The bins labeled 0 contain unidentified candi-
dates, while the bins labeled 1, 2, 3, 4 contain candidates identified in the categories
VeryLoose, Loose, Tight, VeryTight [48]. The accumulation of signal and background
samples at opposite ends of this scale suggests cuts in between. Since their correlations
are not known, separate cuts iK± ≥ 0 . . . 4 and iK± π± ≤ 0 . . . 4 are implemented for both
tracks contributing to a φ and an η candidate, respectively. These cuts are optimized
for candidate counting and subsequently used in the global maximum-likelihood fit.

3.5.3 Photon Energy

The distributions of the energies Eγ of the photon candidates are shown in Fig. 3.11.
To suppress soft background photons in candidate counting, cuts in the ranges Eγ ≥
0.0 . . . 1.0 GeV in the channel η → γγ and Eγ ≥ 0.0 . . . 0.5GeV in the channel η →
π+π−π0 are considered.
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Figure 3.9 Distributions of the kaon identification of the K± candidates in the signal Monte
Carlo, BB Monte Carlo and off-peak data sample for the channels η → γγ (left) and η →
π+π−π0 (right). All frequencies are scaled against the signal Monte Carlo sample. Bin 0 contains
unidentified candidates. Bins 1 . . . 4 contain VeryLoose . . . VeryTight candidates.
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Figure 3.11 Distributions of the energy of the photon candidates in the signal Monte Carlo,
BB Monte Carlo and off-peak data sample for the channels η → γγ (left) and η → π+π−π0

(right). All frequencies are scaled against the signal Monte Carlo sample.

3.5.4 B0 Masses

The distributions of the masses mES and ∆E of the B0 candidates in the BB Monte
Carlo and the off-peak data sample are shown in Fig. 3.12 to 3.15. The distribution of
mES depends on the distribution of the momenta p∗B of the B0 candidates the center-of-
mass system of the beams through Eq. 3.12 as

dN
dmES

=
mES

p∗B

dN
dp∗B

. (3.40)

Since the distribution of p∗B is expected to be proportional to p∗B
2 in the two-body phase

space, the distribution of mES is expected to be proportional to mES

√
1− (mES/m0)2,

where m0 = 1
2E

∗
0 is half the the beam energy in the center-of-mass system of the beams.

This shape was first proposed by the ARGUS collaboration in [55]. Allowing for devi-
ations from this expectation, the final “ARGUS” function fitted to the distributions of
mES is

farg(x) ∝ x
√

1− x2 ep (1− x) Θ(1− x) , (3.41)

where x = mES/m0, p is a free parameter, and Θ(1 − x) is the Heaviside function for
the limit mES ≤ m0.

The distributions of ∆E are fitted by second degree polynomials

fcheb(x) ∝ T 0(x) + c1T
1(x) + c2T

2(x) . (3.42)

The transformation
x = −1 + 2

∆E −∆E1

∆E2 −∆E1
(3.43)

maps the fit range ∆E1 ≤ ∆E ≤ ∆E2 onto the interval −1 ≤ x ≤ +1 where the
Chebychev polynomials6 T i are orthogonal [34].

6These are, strictly speaking, Chebychev polynomials of the first kind.
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Figure 3.12 Distributions of the energy substituted mass of the B0 candidates (in the signal
region of the energy difference) in the BB Monte Carlo sample for the channels η → γγ (left)
and η → π+π−π0 (right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions,
and dashed lines border the sidebands.

]
2

 [GeV/cESenergy subst. mass m
5.2 5.22 5.24 5.26 5.28 5.3

)]2
en

tr
ie

s/
b

in
 [

1/
(0

.0
01

1 
G

eV
/c

0

10

20

30

40

50

60

Energy Subst. Mass (Energy Difference Signal, Offpeak Data)

]
2

 [GeV/cESenergy subst. mass m
5.2 5.22 5.24 5.26 5.28 5.3

)]2
en

tr
ie

s/
b

in
 [

1/
(0

.0
01

1 
G

eV
/c

0

10

20

30

40

50

Energy Subst. Mass (Energy Difference Signal, Offpeak Data)

Figure 3.13 Distributions of the energy substituted mass of the B0 candidates (in the signal
region of the energy difference) in the off-peak data sample for the channels η → γγ (left) and
η → π+π−π0 (right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions, and
dashed lines border the sidebands.
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Figure 3.14 Distributions of the energy difference of the B0 candidates (in the sideband of
the energy substituted mass) in the BB Monte Carlo sample for the channels η → γγ (left) and
η → π+π−π0 (right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions, and
dashed lines border the sidebands.
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Figure 3.15 Distributions of the energy difference of the B0 candidates (in the sideband of
the energy substituted mass) in the off-peak data sample for the channels η → γγ (left) and
η → π+π−π0 (right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions, and
dashed lines border the sidebands.
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The distributions of mES and ∆E in the signal Monte Carlo samples are shown in Fig.
3.16 and 3.17. As expected in Sec. 3.3.1, mES peaks at the B meson mass, and ∆E peaks
at 0. Due to leakage effects in the deposition of photon energy in the electromagnetic
calorimeter, the distributions cease into “radiative” tails. They are fitted by so-called
Crystal Ball functions [56]

fCB(x) =





e−
(x−µ)2

2σ2 , x ≥ µ− ασ
(
r
α

)r
e−α2

2(µ−x
σ + r

α − α
)r , x < µ− ασ

, (3.44)

consisting of a Gaussian p.d.f. and an rth power law tail attached at x = µ−ασ. While
Eq. 3.12 allows for left and right side tails in mES, Eq. 3.11 only accommodates a left
side tail in ∆E. However, the right side tail of mES gets cut off at the limit mES ≤ m0,
while ∆E shows a small right side tail, as well. Consequently, a left side tail p.d.f. with
α > 0 is used for mES, and a joint p.d.f.

f(x) =
{
fCB1(x) , x < µ
fCB2(x) , x ≥ µ

(3.45)

with a left side tail α1 > 0 and a right side tail α2 < 0 is used for ∆E. The tail powers r,
r1 and r2 are fixed in the fits and adjusted to yield maximum χ2 [35] values. To account
for combinatoric background, the corresponding background p.d.f.’s farg or fcheb are
added.

The parameters of the p.d.f.’s fitted to the distributions in Fig. 3.12 to 3.15 are listed in
Tab. 3.4. The joint distributions of mES and ∆E in the signal Monte Carlo, BB Monte
Carlo, off-peak data and data sample are shown in App. C. (This appendix contains
unblinded results.)

Signal Regions

A signal box is defined to cover two standard deviations of the Gaussian components of
the signal distributions, which correspond to |mES−mB0 | ≤ 0.00568GeV/c2 and |∆E| ≤
0.0743GeV. Only B0 candidates inside these regions are considered signal candidates.
However, the signal box also contains candidates from the background distributions.
Since these contributions rise concurrently, the signal regions do not follow the signal
asymmetries. To be blind for the signal, the regions 5.27 ≤ mES ≤ 5.29GeV/c2 and
|∆E| ≤ 0.2GeV over the signal box are covered in the data sample.

The number of signal B0 candidates can be obtained by either counting the signal box or
integrating one of the p.d.f.’s fitted in the signal regions. The statistical uncertainty of a
counted number N is given by the standard deviation σn =

√
N of a Poisson distribution

with mean value n = N . The statistical uncertainty of an integral of a fitted p.d.f. is
estimated by the (calculated) standard deviation of the distribution of 5000 integrals
obtained while varying the p.d.f. parameters within their fit uncertainties. While it is
assured that this distribution is approximately Gaussian, the calculation preserves the
correlations in an integral ratio. Tab. 3.5 lists the resulting numbers of signal candidates
in the signal Monte Carlo, the BB Monte Carlo and the off-peak data sample.
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Figure 3.16 Distributions of the energy substituted mass of the B0 candidates (in the signal
region of the energy difference) in the signal Monte Carlo sample for the channels η → γγ (left)
and η → π+π−π0 (right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions,
and dashed lines border the sidebands.
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Figure 3.17 Distributions of the energy difference of the B0 candidates (in the signal region
of the energy substituted mass) in the signal Monte Carlo sample for the channels η → γγ (left)
and η → π+π−π0 (right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions,
and dashed lines border the sidebands.
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mES ∆E

η
→
γ
γ

signal

S=0.9822± 0.0029
µ=(5.279563± 0.000031) GeV/c2

σ=(2.773± 0.026)MeV/c2

r=10
α=1.329± 0.036
p=−173± 15

S=0.9673± 0.0047
µ=−(6.56± 0.43) MeV
σ=(35.17± 0.42) MeV
r1 =3
r2 =3
α1 =0.963± 0.019
α2 =−1.691± 0.030
c1 =−1.199± 0.019
c2 =−1.691± 0.030

BB p=−68.0± 8.2
c1 =−1.068± 0.043
c2 =0.362± 0.043

qq p=−30.6± 1.7
c1 =−0.663± 0.012
c2 =0.111± 0.012

η
→
π

+
π
−
π

0

signal

S=0.9923± 0.0014
µ=(5.279624± 0.000027) GeV/c2

σ=(2.687± 0.021)MeV/c2

r=10
α=1.311± 0.024
p=−74± 16

S=0.9640± 0.0052
µ=−(4.73± 0.29) MeV
σ=(20.88± 0.36) MeV
r1 =2
r2 =4
α1 =0.775± 0.014
α2 =−0.949± 0.019
c1 =−1.324± 0.088
c2 =0.31± 0.11

BB p=−25.7± 9.8
c1 =−1.051± 0.048
c2 =0.359± 0.049

qq p=−24.7± 2.0
c1 =−0.667± 0.015
c2 =0.111± 0.015

Table 3.4 Signal fractions S and p.d.f. parameters of the energy substituted mass mES (Eq.
3.41 and 3.44) and the energy difference ∆E (Eq. 3.42 and 3.45) in the signal Monte Carlo (Fig.
3.16 and 3.17), BB Monte Carlo (Fig. 3.12 and 3.14) and off-peak (qq) data (Fig. 3.13 and 3.15)
sample for the channels η → γγ and η → π+π−π0.
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Nsig

count mES fit ∆E fit

η
→
γ
γ signal 16702 ± 129 16542 ± 129 16548 ± 131

BB 36 ± 6 24 ± 3

qq 348 ± 19 326 ± 10

η
→
π

+
π
−
π

0

signal 13138 ± 115 13077 ± 113 13125 ± 116

BB 7 ± 3 9 ± 2

qq 198 ± 14 203 ± 8

Table 3.5 Number of signal B0 candidates Nsig obtained by counting the signal box or fitting
the distributions of energy substituted mass mES or energy difference ∆E in the signal regions of
the signal Monte Carlo, BB Monte Carlo and off-peak (qq) data sample for the channels η → γγ
and η → π+π−π0.

The integrals of the p.d.f.’s fitted to the distributions in the signal Monte Carlo sample
only contain the signal components. Although the counted numbers additionally contain
combinatoric contributions, they agree statistically with the fitted numbers. Since they
also have competitive statistical uncertainties, counted numbers are used in this analysis.
The fitted numbers in the background samples have smaller statistical uncertainties due
to the inclusion of a larger range in mES. To use this range for counting, sidebands are
defined below.

The selection efficiency εsig for Monte Carlo signal B0 decays is defined as the ratio of the
number of signal B0 candidates Nsig and the number of signal B0 decays N0

B0(B0 → ηφ)
in the Monte Carlo sample. Since every signal Monte Carlo event contains one signal
B0 decay, N0

B0(B0 → ηφ) is substituted with the number of signal Monte Carlo events
N0
B0B0(B

0 → ηφ). The selection efficiency for Monte Carlo background B decays is
defined as the ratio of the number of signal B0 candidates and the number of background
B decays N0

B(B0 9 ηφ) in the Monte Carlo sample. Since every BB Monte Carlo event
contains two background B decays, N0

B(B0 9 ηφ) is substituted by twice the number of
BB Monte Carlo events N0

BB
(B0 9 ηφ). For the off-peak data sample, an estimation

of εsig is based on twice the number of qq events assumed in Sec. 3.2.

Derived from the selection efficiencies are the expected numbers of signal B0 candidates
N̂sig in the data sample. Upper limits on the contributions from signal B0 decays are
obtained from the upper limits on the numbers of signal B0 decays given in Tab. 3.2.
Contributions from background B decays are estimated using the number of BB events
from BB counting. Again, for qq background, the assumptions in Sec. 3.2 are used.

The resulting efficiencies and expected numbers of signal candidates are listed in Tab. 3.6.
The estimates show clearly that the qq background contribution dominates the number
of signal B0 candidates. Its suppression is the primary motivation for applying further
cuts. Although the selection efficiency for background B decays is at least one order
of magnitude smaller, the expected number of signal B0 candidates from background
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B decays is still in the same order of magnitude as the expected upper limit on the
number of signal candidates from signal B0 decays. Hence, the BB background has to be
considered as a systematic uncertainty. However, the selection efficiency for background
B decays is also at least one order of magnitude smaller than the number of signal
B0 decays in the signal Monte Carlo sample, so that no signal B0 candidates from
background B decays are expected in this sample. Indeed, the signalB0 candidates in the
signal Monte Carlo sample that are not associated with signal B0 decays predominantly
contain one φ candidate and one photon candidate associated with constituents of a
signal decay and one photon candidate associated with a background photon.

εsig N̂sig

η
→
γ
γ signal 0.4283± 0.0033 < 66.2 ± 1.4

BB ( 0.166 ± 0.028 )× 10−6 29.4 ± 4.9

qq ( 0.534 ± 0.029 )× 10−5 2956 ± 166

η
→
π

+
π
−
π

0

signal 0.3551± 0.0031 < 31.46± 0.83

BB ( 0.32 ± 0.12 )× 10−7 5.7 ± 2.2

qq ( 0.304 ± 0.022 )× 10−5 1682 ± 123

Table 3.6 Selection efficiencies εsig and expected numbers of signal B0 candidates N̂sig in the
data sample from signal B0 decays, BB background decays and qq events in the channels η → γγ
and η → π+π−π0. Limits are given at 90% c.l.

Sidebands

Sidebands are regions in which only background events are expected. They are there-
fore separated from the signal box and chosen to cover as much statistics as available.
Sidebands are defined for this analysis in the regions 5.20 ≤ mES ≤ 5.27GeV/c2 and
|∆E| ≤ 0.3GeV. Fig. 3.12 to 3.15 show mES in the ∆E signal region and ∆E in the
mES sideband. Fig. 3.16 and 3.17 show mES in the ∆E signal region and ∆E in the
mES signal region.

The sideband distributions of mES in the ∆E signal region and the distributions of ∆E
in the mES sideband in the data sample are shown in Fig. 3.18 and 3.19. Although the
signal region of mES is blinded, the p.d.f.’s fitted in the sidebands are extrapolated into
the full mES range. This allows a comparison with the off-peak data sample which is
discussed in detail in Sec. 3.6. As expected from Tab. 3.6, the distributions in the data
sample are generally best described by those in the off-peak data sample.

The high statistics of the data sample also reveal the effects of different approaches for
the treatment of events with multiple B0 candidates. Fig. 3.20 shows the distributions
of ∆E for the candidates with the smallest deviation from the B meson mass. The
exclusive selection of these candidates enhances the frequency in the signal region. The
resulting signal shape is well modeled by a joint Crystal Ball signal p.d.f. An inspection of
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Figure 3.18 Sideband distributions of the energy substituted mass of the B0 candidates (in
the signal region of the energy difference) in the data sample for the channels η → γγ (left) and
η → π+π−π0 (right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions, and
dashed lines border the sidebands.
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Figure 3.19 Distributions of the energy difference of all B0 candidates (in the sideband of the
energy substituted mass) in the data sample for the channels η → γγ (left) and η → π+π−π0

(right). Solid curves show fitted p.d.f.’s. Solid lines border the signal regions, and dashed lines
border the sidebands.
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Figure 3.20 Distributions of the energy difference of the B0 candidates with the smallest
deviation from the B meson mass (in the sideband of the energy substituted mass) in the data
sample for the channels η → γγ (left) and η → π+π−π0 (right). Solid curves show fitted p.d.f.’s.
Solid lines border the signal regions, and dashed lines border the sidebands.

continuum Monte Carlo samples shows that many B0 candidates in this region contain a
φ candidate correctly reconstructed from a φmeson that is combined with an η candidate
made from a random combination of background photons. Given the large number
of background photons in the absence of a vertex constraint, a B0 candidate with a
mass close to the B meson mass is thus easily constructed. The distribution of the
masses of all constructed B0 candidates, however, is still arbitrary. For the benefit of a
smoothly shaped background, all B0 candidates in each event are accepted throughout
this analysis. The mean multiplicities in the data samples are 1.4 in the channel η →
γγ and 1.7 in the channel η → π+π−π0, measured with statistical uncertainties of
approximately 1%. Although multiple signal B0 candidates are also found for signal
B0 decays, the term selection efficiency is used, since it is always smaller than 1. The
parameters of the p.d.f.’s fitted to the distributions in Fig. 3.18 to 3.20 are listed in Tab.
3.7.

3.5.5 Resonance Masses

The distributions of the invariant mass mγγ of the π0 candidates in the channel η →
π+π−π0 are shown in Fig. 3.21. The distributions of the invariant mass mγγ of the η
candidates in the channel η → γγ and the composite mass mη of the η candidates in the
channel η → π+π−π0 are shown in Fig. 3.22. The distributions of the composite mass
mφ of the φ candidates are shown in Fig. 3.23.

The signal components of themγγ distributions in the channel η → γγ show radiative left
side tails and are fitted by single Crystal Ball functions. Their background components
are fitted by (ordinary) first degree polynomials. The signal components of the mγγ and
mη distributions in the channel η → π+π−π0 show radiative left side and also smaller
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mES ∆E

η
→
γ
γ

all p=−25.74± 0.90
c1 =−0.6756± 0.0041
c2 =0.1237± 0.0041

mB0

S=0.0402± 0.0030
µ=(37.5± 3.6)MeV
σ=(62.7± 3.0)MeV
r1 =3
r2 =3
α1 =1.238
α2 =−1.967
c1 =−0.6877± 0.0041
c2 =0.0622± 0.0068

η
→
π

+
π
−
π

0

all p=−26.1± 1.1
c1 =−0.7036± 0.0050
c2 =0.1187± 0.0050

mB0

S=0.0880± 0.0073
µ=(31.96081± 0.00056)MeV
σ=(64.3± 3.9)MeV
r1 =3
r2 =3
α1 =1.293
α2 =−1.378
c1 =−0.7433± 0.0086
c2 =0.073± 0.013

Table 3.7 Signal fractions S and p.d.f. parameters of the energy substituted mass mES (Eq.
3.41) and the energy difference ∆E (Eq. 3.42 and 3.45) of all B0 candidates (Fig. 3.18 and 3.19)
and the candidates with the best composite mass mB0 (Fig. 3.20) in the data sample for the
channels η → γγ and η → π+π−π0.
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Figure 3.21 Distributions of the invariant
mass of the π0 candidates in the signal Monte
Carlo, BB Monte Carlo and off-peak data
sample for the channel η → π+π−π0. All fre-
quencies are scaled against the signal Monte
Carlo sample.
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Figure 3.22 Distributions of the invariant mass and the composite mass, respectively, of the η
candidates in the signal Monte Carlo, BB Monte Carlo and off-peak data sample for the channels
η → γγ (left) and η → π+π−π0 (right). All frequencies are scaled against the signal Monte Carlo
sample.
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Figure 3.23 Distributions of the composite mass of the φ candidates in the signal Monte Carlo,
BB Monte Carlo and off-peak data sample for the channels η → γγ (left) and η → π+π−π0

(right). All frequencies are scaled against the signal Monte Carlo sample.
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right side tails and are therefore fitted by joint Crystal Ball functions. Their background
components are fitted by second degree polynomials. The mφ distributions are fitted by
convolutions of a Breit–Wigner decay function

fdec(x) ∝ 1

(x− µ)2 +
(

1
2Γ

)2 (3.46)

and a Gaussian resolution function

fres(x) ∝ e−
(x−µ)2

2σ2 (3.47)

with the common mean value µ. Their background components are fitted by second
degree polynomials. The Breit–Wigner decay widths Γ and the transition parameters
α, α1 and α2 of the Crystal Ball functions are fixed in all samples to the values fitted to
the signal Monte Carlo sample.

The distributions of the masses of the resonance candidates in the data sample can be
fitted by the signal and the background p.d.f.’s found in the signal Monte Carlo and the
off-peak data sample. The p.d.f.’s fitted to the distributions of the masses of the π0, η
and φ candidates in the signal Monte Carlo, the off-peak data and the data sample are
compared in App. A. The general agreement of the signal components in Monte Carlo
and data events suggests that the Monte Carlo simulation is reliable. Systematic effects
in this comparison are discussed in Sec. 3.6. The close match of signal and background
components in off-peak and on-peak data events supports the conclusion that the qq
background is dominating.

To suppress background contributions in candidate counting, cuts are applied around
the meson masses mπ0 , mη and mφ [8]. In the channel η → γγ, cuts in the range
|mη−mη| ≤ 0.010 . . . 0.070GeV/c2 and |mφ−mφ| ≤ 0.001 . . . 0.020GeV/c2 are considered.
In the channel η → π+π−π0, cuts in the ranges |mπ0 −mπ0 | ≤ 0.005 . . . 0.025GeV/c2,
|mη−mη| ≤ 0.005 . . . 0.025GeV/c2 and |mφ−mφ| ≤ 0.001 . . . 0.020GeV/c2 are considered.

3.5.6 Fisher Discriminant

The distributions of the Fisher discriminant F are shown in Fig. 3.24. They are fitted
by the sum of three independent Gaussian p.d.f.’s. To optimize separation in candidate
counting, cuts in the range F ≤ −0.5 . . . 1.0 are considered.

3.5.7 Helicity Angles

The distributions of the magnitudes of the cosines of the helicity angles |cos(ϑλ φ)| of the
φ candidates are shown in Fig. 3.25. The distributions in the signal Monte Carlo sample
follow the expectation of Sec. 3.3.2 and are fitted by parabolas. The distributions in
the BB Monte Carlo and the off-peak data sample are generally flat, but show accumu-
lations toward |cos(ϑλ φ)| = 1. They are therefore fitted by third degree polynomials.
Strong background suppression in candidate counting is expected from cuts in the range
|cos(ϑλ φ)| ≥ 0.1 . . . 0.6.
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Figure 3.24 Distributions of the Fisher discriminant in the signal Monte Carlo, BB Monte
Carlo and off-peak data sample for the channels η → γγ (left) and η → π+π−π0 (right). All
frequencies are scaled against the signal Monte Carlo sample.
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Figure 3.25 Distributions of the magnitude of the cosine of the helicity angle of the φ can-
didates in the signal Monte Carlo, BB Monte Carlo and off-peak data sample for the channels
η → γγ (left) and η → π+π−π0 (right). All frequencies are scaled against the signal Monte Carlo
sample.
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Figure 3.26 Distributions of the magnitude of the cosine of the helicity angle of the η can-
didates and the π0 candidates, respectively, in the signal Monte Carlo, BB Monte Carlo and
off-peak data sample for the channels η → γγ (left) and η → π+π−π0 (right). All frequencies
are scaled against the signal Monte Carlo sample.

The distributions of the magnitudes of the cosines of the helicity angles |cos(ϑλ η)| of
the η candidates in the channel η → γγ and |cos(ϑλ π0)| of the π0 candidates in the
channel η → π+π−π0 are shown in Fig. 3.26. Since the expected rise of the distribution
of |cos(ϑλ η)| in the background samples at |cos(ϑλ η)| = 1 is very strong, cuts are
considered for candidate counting in the range |cos(ϑλ η)| ≤ 0.6 . . . 1.0. Since the same
effect in the distribution of |cos(ϑλ π0)| is much smaller, which can be explained by the
lower mass of the π0 meson, the fixed cut |cos(ϑλ π0)| ≤ 0.9 is applied.

3.6 Candidate Counting Method

The candidate counting method obtains the number of signal B0 candidates in the data
sample from counting the entries in the signal box. In order to use the signal Monte Carlo
sample to determine the signal selection efficiency, the background contributions in the
signal box need to be subtracted. This is accomplished by means of the sidebands. To
achieve high signal and low background selection, all cuts on kinematic and topological
variables considered in Sec. 3.5 are optimized.

3.6.1 Background Subtraction

After application of all cuts, the (background subtracted) signal number

S = Nsig −B (3.48)

is calculated from the number of B0 candidates in the signal boxNsig and the background
number B, where

B = RNSB (3.49)
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is obtained from the number of B0 candidates in the sideband NSB and the background
ratio R. If R is small and the Poisson distributed Nsig and NSB are large enough to
estimate their standard deviations by σNsig

=
√
Nsig and σNSB

=
√
NSB, the standard

deviation
σS =

√
Nsig +R2NSB (3.50)

of S simply becomes
σS =

√
S +B . (3.51)

The background ratios are found by evaluating

R =
Nsig

NSB
(3.52)

in the BB Monte Carlo and the off-peak data sample while successively applying cuts
in the ranges considered in Sec. 3.5 in the order

1. mass of the η candidates

2. mass of the φ candidates

3. mass of the π0 candidates 7

4. kaon identification of the first K± candidate

5. kaon identification of the second K± candidate

6. kaon identification of the first π± candidate 7

7. kaon identification of the second π± candidate 7

8. Fisher discriminant

9. helicity angle of the η candidates 8

10. helicity angle of the φ candidates

11. helicity angle of the π0 candidates 7

12. energy of the photon candidates

13. number of tracks.

The resulting evolutions of the ratios are shown in Fig. 3.27 and 3.28. To estimate the
ratios at the final number of cuts, these evolutions are fitted by constants. Since the
statistical uncertainties rise for subsequent values, the constants inherit the uncertainties
of the initial ratios, while deviations from the constants at 32% c.l. are averaged as
systematic uncertainties. The resulting constants are given in Tab. 3.8.

7Only in the channel η → π+π−π0.
8Only in the channel η → γγ.
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Figure 3.27 Background ratios R in the BB Monte Carlo (left) and the off-peak data (right)
sample for the channel η → γγ vs. number of cuts. Solid lines show fitted constants.
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Figure 3.28 Background ratios R in the BB Monte Carlo (left) and the off-peak data (right)
sample for the channel η → π+π−π0 vs. number of cuts. Solid lines show fitted constants.
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η → γγ η → π+π−π0

RBB 0.0921± 0.0179 0.0252± 0.0065

Rqq 0.0318± 0.0013 0.0281± 0.0014

Table 3.8 (Counted) background ratiosRBB andRqq in the channels η → γγ and η → π+π−π0.
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Figure 3.29 Background ratios R fitted to the sidebands in the on-peak and the off-peak data
sample for the channels η → γγ (left) and η → π+π−π0 (right) vs. number of cuts.

Alternatively,

R =

∫
sig

farg(mES) dmES

∫
SB

farg(mES) dmES

∫
sig

fcheb(∆E) d∆E
∫
SB

fcheb(∆E) d∆E
(3.53)

is calculated from the p.d.f.’s farg and fcheb fitted to the distributions of mES and ∆E,
respectively, in Fig. 3.12 to 3.15 by integrating them in the signal regions (“sig”) and
sidebands (“SB”). The advantage of this method is that it is even applicable to the data
sample if the farg fit is limited to the mES sideband and afterward extrapolated to the
mES signal region. The comparison of these sideband extrapolated ratios in the on-peak
and the off-peak data sample is shown in Fig. 3.29. They are consistent within their
statistical uncertainties. A systematic uncertainty of 4.9% in the channel η → γγ and
5.5% in the channel η → π+π−π0 for using Rqq in the data sample is estimated from the
statistical uncertainties of the initial ratios.



3.6 Candidate Counting Method 79

3.6.2 Selection Efficiencies

The selection efficiencies for signal and background B decays have been defined in Sec.
3.5.4. The signal selection efficiency εS is obtained by evaluating

εS = εMC
Nsig

N0
B0B0

(3.54)

in signal Monte Carlo sample, where N0
B0B0 is the number of events and εMC is the mean

value of the products of the tracking efficiency corrections for all tracks contributing to
one B0 candidate. The BB background selection efficiency εBB is obtained by evaluating

εBB = εMC
NSB

2N0
BB

(3.55)

in the BB Monte Carlo sample, with N0
BB

being the number of events.

The effect of signal B0 decays that were removed from the BB Monte Carlo sample after
N0
BB

was counted is negligible, since the relative deviation of the selection efficiency
depends on the signal branching fraction B by

∆εBB
εBB

≈ −2B (3.56)

for B ¿ 1. On the other hand, the selected background B decays have to be subtracted
from Nsig in Eq. 3.54. The relative deviation of the signal selection efficiency, however,
is

∆εS
εS

=
RBB εBB

εS
, (3.57)

which is negligible with regard to εsig = RBB εBB in Tab. 3.6.

3.6.3 Signal Expectation

The expected signal number Ŝ is determined for a given set of cuts from the signal
selection efficiency εS and the expected number of signal B0 decays in the data sample
N̂0
B0B0(B

0 → ηφ) by

Ŝ = εS N̂
0
B0B0(B

0 → ηφ) . (3.58)

Assuming a significant signal, an upper limit on N̂0
B0B0(B

0 → ηφ) is calculated from the
CLEO upper limit on B(B0 → ηφ) [33]. Assuming no signal, the expected upper limit
on S is calculated for Ŝ = 0.

3.6.4 Background Expectation

The expected background number

B̂ = B̂BB + B̂qq (3.59)
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contains the BB background number B̂BB and the qq background number B̂qq. For each
given set of cuts, the expected number of BB background B0 candidates in the side-
band N̂BB is determined from the background selection efficiency εBB and the expected
number of background B decays in the data sample N̂0

BB
(B0 9 ηφ) by

N̂BB = εBB N̂
0
BB

(B0 9 ηφ) . (3.60)

As before, N̂0
BB

(B0 9 ηφ) comes from BB counting, in which the signal contributions
are negligible. Assuming a common cross section, the expected number of qq background
B0 candidates in the sideband N̂qq is derived from the ratio of the integrated luminosities
Lon and Loff of the on-peak and off-peak data sample, respectively, by evaluating

N̂qq =
Lon

Loff
NSB (3.61)

in the off-peak data sample. Finally, the expected background numbers are calculated
from Eq. 3.49 by

B̂BB = RBB N̂BB , (3.62)

B̂qq = Rqq N̂qq . (3.63)

3.6.5 Cut Optimization

The cut optimization is performed by simultaneous variation of all cuts in the ranges
given in Sec. 3.5. The choice of the optimization criterion determines the precision of
the measured branching fraction B(B0 → ηφ) and depends on the expected value of the
signal number S. If the signal is significant, maximum precision of B is equivalent to
maximum significance S/σS, which by Eq. 3.51 leads to the criterion

S2

S +B
→ max . (3.64)

If the signal is not significant, but the mean value of the background distribution can
still be estimated by B ≈ B, the upper limit Sε on the mean value S of the Poisson
distribution of S at 1− ε = 90% is used instead. In Bayesian statistics, it is fitted to the
relation [35]

ε =

S∑
n=0

e−
(
B + Sε

)
(B+Sε)n

n!

S∑
n=0

e−B Bn

n!

. (3.65)

Since the uncertainty on the branching fraction B decreases with a decreasing upper
limit Bε, the optimization criterion is then

Bε(B0 → ηφ) → min . (3.66)

The results of an optimitzation for the signal criterion are given in Tab. 3.9. No signif-
icant signal is expected in either channel. The fixed cuts and those optimized for the
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no-signal criterion are summarized in Tab. 3.10. The dependences of the expected upper
limit on B(B0 → ηφ) on the varied cuts are shown in App. B. The signal selection
efficiencies and expectations for signal and background numbers, numbers of signal and
background B0 candidates in the sidebands and upper limits on B(B0 → ηφ) under these
cuts are given in Tab. 3.11. The joint distributions of mES and ∆E in the signal Monte
Carlo, BB Monte Carlo, off-peak data and data sample under these cuts are shown in
App. C. (This appendix contains unblinded results.)

η → γγ η → π+π−π0

Ŝ < 31.73± 0.70 < 13.14 ± 0.37

B̂BB 0.15± 0.11 0.040± 0.030

B̂qq 6.5 ± 1.4 3.10 ± 0.88

Ŝ2/(Ŝ + B̂) < 26.3 ± 1.2 < 10.61 ± 0.67

Table 3.9 Expected signal number Ŝ, background numbers B̂BB and B̂qq and optimization
criterion Ŝ2/(Ŝ+ B̂) for signal optimized cuts in the channels η → γγ and η → π+π−π0. Limits
are given at 90% c.l.

3.6.6 Sideband Measurement

The numbers of B0 candidates counted in the sidebands of the data sample are presented
in Tab. 3.12. They agree with the expected numbers in Tab. 3.11 at 12% c.l. in the
channel η → γγ and 1.2% c.l. in the channel η → π+π−π0. Their deviations are
tracked down to the influence of cuts on topological variables. Since these variables
depend on the absolute energy in the center-of-mass system of the beams, they can
show differences between on-peak and off-peak data. Expected and measured candidate
numbers at successively applied optimized cuts are compared in Fig. 3.30. For the order
of cuts see Sec. 3.6.1.

While the observed deviations concern the optimization result, the measurement of the
branching fraction only depends on the validity of the background ratio. To cross-check
the final ratios in Tab. 3.8, the sideband extrapolated background ratios defined in Eq.
3.53 are calculated under the optimized cuts in the data sample. They are found to be
consistent with the final ratios within 32% c.l. The sideband extrapolated ratios and the
background numbers calculated from both sets of ratios are also given in Tab. 3.12.

3.6.7 Systematic Uncertainties

Differences between the distribution shapes of the variables mES and ∆E in the signal
Monte Carlo and the data sample cause differences between the signal selection efficien-
cies εS . Since the signal regions of these variables are blinded in the data sample, the
differences in εS have to be assessed indirectly from the signal shapes of the masses that
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η → γγ η → π+π−π0

Ntrack ≥ 3 ≥ 5

iK±1 ≥ VeryLoose
iK±2

iK± π±1 ≤ VeryTight
iK± π±2

Eγ ≥ 0GeV

|mγγ −mη| ≤ 0.025GeV/c2

|mγγ −mπ0 | ≤ 0.015GeV/c2

|mη −mη| ≤ 0.01GeV/c2

|mφ −mφ| ≤ 0.01GeV/c2 ≤ 0.02GeV/c2

F ≤ 0.1

|cos(ϑλ η)| ≤ 0.9

|cos(ϑλ π0)| ≤ 0.9

|cos(ϑλ φ)| ≥ 0.5

Table 3.10 Fixed and no-signal optimized cuts on the number of tracks Ntrack, the kaon
identifications iK± of the K± and iK± π± of the π± candidates, the energy Eγ of the photon
candidates, the invariant masses mγγ of the η and π0 candidates, the composite masses mη and
mφ of the η and φ candidates, the Fisher discriminant F and the helicity angles ϑλ η, ϑλ π0 and
ϑλ φ of the η, π0 and φ candidates in the channels η → γγ and η → π+π−π0.

govern the mass of the B0 candidates. For this purpose, the signal components of the
p.d.f.’s fitted to the distributions of the masses of the η and φ candidates in Fig. A.1 to
A.5 are normalized to their reconstruction ranges and integrated within the optimized
cut ranges. The statistical uncertainties of the integrals in the signal Monte Carlo and
the data samples and their deviations at 32% c.l. are taken for uncertainties on εS .
This procedure is illustrated in Fig. 3.31 for the η candidates and in Fig. 3.32 for the φ
candidates and gives the relative uncertainties listed in Tab. 3.13.

Further uncertainties arise from the fact that the number of B0 candidates in the side-
band scaled by the ratio Rqq also contains BB background and signal candidates. For
NBB BB background and Nqq qq background candidates, the relative deviation of the
background number is

∆B
B

=
NBB

NBB +Nqq

(
1− RBB

Rqq

)
. (3.67)
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Figure 3.30 Expected and measured numbers of candidates in the sidebands of the data sample
for the channels η → γγ (left) and η → π+π−π0 (right) vs. number of cuts.
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Figure 3.31 Signal components of p.d.f.’s fitted to the distributions of the invariant mass and
the composite mass, respectively, of the η candidates in the signal Monte Carlo and the data
sample for the channels η → γγ (left) and η → π+π−π0 (right) in the optimized cut ranges. The
error belts cover two standard deviations of the p.d.f. integrals.
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η → γγ η → π+π−π0

εS 0.1624± 0.0020 0.1238± 0.0018

Ŝ < 25.11 ± 0.57 < 10.97 ± 0.32

ŜSB < 0.697 ± 0.053 < 0.401 ± 0.031

N̂BB < 1.878 ± 0.021 < 1.806 ± 0.020

B̂BB < 0.173 ± 0.025 < 0.046 ± 0.012

N̂qq 68 ± 24 43 ± 19

B̂qq 2.16 ± 0.77 1.19 ± 0.54

B̂Bay < ( 1.42 ± 0.31 )× 10−6 < ( 2.80 ± 0.74 )× 10−6

B̂FC < ( 1.43 ± 0.16 )× 10−6 < ( 2.84 ± 0.37 )× 10−6

Table 3.11 Signal selection efficiencies εS , expected signal numbers Ŝ and background numbers
B̂BB and B̂qq, expected numbers of signal B0 candidates ŜSB and backgroundB0 candidates N̂BB

and N̂qq in the sideband and expected upper limits on the branching fraction BBay(B0 → ηφ)
in Bayesian statistics and BFC(B0 → ηφ) in frequentist statistics for no-signal optimized cuts in
the channels η → γγ and η → π+π−π0. Limits are given at 90% c.l.

Since there are no B0 candidates in the sidebands of the BB Monte Carlo samples,
upper limits are used for the expected numbers of background candidates N̂BB. Both
N̂BB and N̂qq are taken from Tab. 3.11 and yield uncertainties below 5.1% in the channel
η → γγ and 0.42% in the channel η → π+π−π0. The large uncertainty in the channel
η → γγ is due to the large difference of RBB and Rqq.

To obtain the limits on the expected sideband signal number ŜSB that are listed in Tab.
3.11, Nsig is substituted by NSB in Eq. 3.54. The resulting relative deviations of the
background numbers

∆B
B

= − SSB

SSB +NSB
(3.68)

are smaller than 1.0% in both channels.

3.7 Maximum-Likelihood Method

The maximum-likelihood method obtains the number of signal B0 decays in the data
sample from a global multivariate maximum-likelihood fit [35]. The distribution shapes
of all included variables for signal B0 decays and qq background processes are extracted
from the signal Monte Carlo and the off-peak data sample, respectively. To validate the
method, it is applied to study samples composed of background shape generated “toy”
B0 candidates and different numbers of B0 candidates from signal Monte Carlo events.
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η → γγ η → π+π−π0

NSB 122 ± 11 107 ± 10

B 3.88 ± 0.39 3.01 ± 0.33

R′ 0.0243± 0.0066 0.0278± 0.0098

B′ 2.97 ± 0.85 3.0 ± 1.1

Table 3.12 Measured number of candidates in the sidebands NSB and background numbers
B (calculated from the background ratios R in Tab. 3.8) and B′ (calculated from the sideband
extrapolated background ratios R′) in the data sample for the channels η → γγ and η → π+π−π0.
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Figure 3.32 Signal components of p.d.f.’s fitted to the distributions of the composite mass
of the φ candidates in the signal Monte Carlo and the data sample for the channels η → γγ
(left) and η → π+π−π0 (right) in the optimized cut ranges. The error belts cover two standard
deviations of the p.d.f. integrals.

3.7.1 Likelihood Function

The used likelihood function has the form

L = N ! P(n)
N∏

i=1

∑

j=1,2

njPj(xi) . (3.69)

N is the total number of candidates, nj is the number of candidates in category j, and
Pj(xi) is the probability density of candidate i with variable values xi in category j.

P(n) = e−n n
N

N !
(3.70)
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η → γγ η → π+π−π0

∆εS/εS
(mγγ/η) 1.1 % 2.5 %

(mφ) 0.74% 1.0 %

Table 3.13 Relative systematic uncertainties ∆x/x on the signal selection efficiency x = εS

due to distribution shapes of the masses mγγ and mη, respectively, of the η candidates and mφ

of the φ candidates in the channels η → γγ and η → π+π−π0.

is the Poisson probability of observing N candidates at an expectation of

n =
∑

j=1,2

nj (3.71)

candidates. With j = 1 being the signal category and j = 2 being the background
category, the signal yield is S = n1, and the background yield is B = n2. The probability
densities Pj(x) are products of the p.d.f. values for

• the energy substituted mass mES,

• energy difference ∆E,

• the invariant mass mγγ of the η candidates in the channel η → γγ,

• the invariant mass mγγ of the π0 candidates in the channel η → π+π−π0,

• the composite mass mη of the η candidates in the channel η → π+π−π0,

• the composite mass mφ of the φ candidates,

• the Fisher discriminant F and

• the magnitude of the cosine of the helicity angle |cos(ϑλ φ)| of the φ candidates.

First, cuts on the number of tracks and the kaon identification of the K± candidates
are applied. They are chosen at the values listed in Tab. 3.10. Then S and B are fitted
to the data sample. The p.d.f.’s for signal B0 candidates, obtained from fits to the
signal Monte Carlo sample, and for background B0 candidates, obtained from fits to the
off-peak data sample, are shown in App. D. The projections of the likelihood function
fitted to a mixed sample of off-peak data, BB Monte Carlo and 1000 signal Monte Carlo
events on the included variables are shown in App. E. (This appendix contains unblinded
results.) As found in Sec. 3.5.4, there is no BB background in the signal Monte Carlo
sample and only a small BB background component in the data sample.

In all fits to the data sample, blinded versions of S and B are supplied to the fitting
algorithm. The blinding is performed by adding random constants. As a consequence,
the ranges of the unblind values in the fits are unknown. To provide a coherent method
for blind and unblind fits while restricting the fit range to physical values, only the mag-
nitudes of the unblind values are used in the fit. The likelihood functions are therefore
mirrored at 0.
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3.7.2 Selection Efficiencies

Analogously to Sec. 3.6.2, the signal selection efficiency (Eq. 3.54)

εsel = εMC
Nsig

N0
B0B0

(3.72)

is calculated from the Monte Carlo efficiency correction εMC, the number of B0 candi-
dates Nsig and the number of events N0

B0B0 in the signal Monte Carlo sample. In this
method, however, Nsig is the number of B0 candidates in the full variable range of the
maximum-likelihood fit. The obtained efficiencies are listed in Tab. 3.14. Accordingly,
the BB background selection efficiency (Eq. 3.55)

εBB = εMC
NBB

2N0
BB

(3.73)

is obtained from the number of B0 candidates to fit NBB and the number of events N0
BB

in the BB Monte Carlo sample.

3.7.3 Selection Expectations

An upper limit on the expected number of B0 candidates from signal B0 decays in the
fit N̂sig is determined from the signal selection efficiency εsel and the upper limit on the
number of signal B0 decays in the data sample N̂0

B0B0(B
0 → ηφ) expected from the

CLEO upper limit on B(B0 → ηφ) [33] by

N̂sig = εsel N̂
0
B0B0(B

0 → ηφ) . (3.74)

The expected number of B0 candidates from background B0 decays in the fit N̂BB

is determined from the BB background selection efficiency εBB and the number of
background B decays in the data sample N̂0

BB
(B0 9 ηφ) expected from BB counting

by
N̂BB = εBB N̂

0
BB

(B0 9 ηφ) . (3.75)

Assuming a common cross section, the expected number of B0 candidates from qq back-
ground processes in the fit N̂qq is determined from the ratio of the integrated luminosities
Lon and Loff of the on-peak and off-peak data sample, respectively, and the observed
number of B0 candidates to fit in the off-peak data sample N by

N̂qq =
Lon

Loff
N . (3.76)

These expectations are collected in Tab. 3.14.

3.7.4 Fit Bias and Efficiency

To account for a bias δfit 6= 0 and an efficiency εfit 6= 1 of the maximum-likelihood fit, the
signal fit yield S is parameterized as a function of the number of signal B0 candidates
to fit Nsig by

S = εfitNsig + δfit . (3.77)
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η → γγ η → π+π−π0

εsel 0.5039± 0.0035 0.4087± 0.0032

N̂sig < 77.9 ± 1.6 < 36.23 ± 0.96

N̂BB 173 ± 16 78 ± 11

N̂qq 12197 ± 383 9054 ± 317

Table 3.14 Signal selection efficiencies εsel and expected number of B0 candidates from sig-
nal B0 decays N̂sig, BB background B0 decays N̂BB and qq background processes N̂qq in the
maximum-likelihood fit for the channels η → γγ and η → π+π−π0. Limits are given at 90% c.l.

To use a total signal selection efficiency

εS = εsel εfit (3.78)

in Eq. 3.1, the substitution S → S′ with the bias corrected signal number

S′ = S − δfit (3.79)

is applied. Since δfit and εfit are expected to depend on the total number of B0 candidates
in the fit to the data sample, but the off-peak data sample is significantly smaller than
the data sample, “toy” B0 candidates are generated from the distribution shapes of
their variables in the off-peak data sample.9 δfit and εfit are determined from fits to
study samples composed of these background B0 candidates and signal B0 candidates
from the signal Monte Carlo sample. While the chosen numbers of background B0

candidates correspond to the expectations given in Tab. 3.14, the numbers of signal B0

candidates are varied between 0 and 25. To gain uncorrelated estimates, the available
signal Monte Carlo events are distributed over approximately 2400 study samples such
that the relative statistical uncertainties on the mean values of the signal fit yields for all
numbers of signal B0 candidates are comparable. Fig. 3.33 shows the obtained profiles
which are fitted by Eq. 3.77. Deviations from the fitted parameters at 32% c.l. are
averaged as systematic uncertainties on δfit. The yield distributions for separate fits
with selected numbers of B0 candidates are shown in App. F. The fitted biases and
efficiencies are listed in Tab. 3.15.

3.7.5 Statistical Uncertainties

If the likelihood function L in Eq. 3.69 is described by a Gaussian p.d.f., the uncer-
tainty σS of the signal fit yield S corresponds to an increase of the negative logarithmic
likelihood

− 2 lnL =
(n1 − S)2

σ2
S

(3.80)

9The term “toy” refers to the fact that only values for variables in the fit are generated. Besides that,
the applied accept-reject method [35] is a valid Monte Carlo algorithm.
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Figure 3.33 Signal fit yield vs. number of signal B0 candidates in maximum-likelihood fits to
study samples for the channels η → γγ (left) and η → π+π−π0 (right).

η → γγ η → π+π−π0

δfit 2.21 ± 0.16 1.83 ± 0.14

εfit 1.151± 0.027 1.209± 0.025

Table 3.15 Signal fit bias δfit and signal fit efficiency εfit in maximum-likelihood fits to study
samples for the channels η → γγ (left) and η → π+π−π0 (right).

by −2∆ lnL = 1 from S to S±σS. While the Gaussian approximation of L is safely used
for significant signal yields, a Bayesian upper limit Sε for smaller yields is calculated at
1−ε = 90% c.l. To use the bias corrected signal number S′ in Eq. 3.7, the upper limit S′ε
is needed. It is calculated according to Eq. 3.5 from the normalized likelihood integral

1− ε =

Sε∫
δfit

L(S)dS

∞∫
δfit

L(S)dS
(3.81)

and the limit condition S′ε = Sε − δfit.

Although the signal yields of the fits to the data samples are blinded, the positions
of 0 are nevertheless visible for accordingly small results. Consequently, the likelihood
functions can not be used for validation of the blinded fits. On the other hand, it can
be seen in Fig. 3.33 that the fit uncertainties contain both the Poisson uncertainty σn

from Eq. 3.70 and the intrinsic fit uncertainties of the variable p.d.f.’s. Since the latter
are unknown, but have a strong impact especially in the sensitive region of small results,
the fit uncertainties of the blinded fits to the data samples are given at this point. They
amount to σS = 8.3 in the channel η → γγ and σS = 4.5 in the channel η → π+π−π0.
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Figure 3.34 Distribution of the signal fit efficiency for variation off the p.d.f. parameters in
maximum-likelihood fits to study samples for the channels η → γγ (left) and η → π+π−π0

(right).

3.7.6 Systematic Uncertainties

Systematic uncertainties on the signal fit yields are absorbed into the signal fit efficiency.
To achieve reasonable statistics while still resembling the expected signal yields, 500
signal B0 candidates are included into study samples. First, these samples are used to
assess the stability of the fit yields under varying distribution shapes. For this purpose,
the correlated parameters of each p.d.f. are varied within the covariances from their
fits to the off-peak data and signal Monte Carlo samples. The distributions of the fit
efficiencies for simultaneous variation of all p.d.f.’s are shown in Fig. 3.34. Contributions
from failed fits are removed, and the mean values εfit and standard deviations σεfit

are
calculated. Relative uncertainties due to the widths of the distributions are estimated
by

∆εfit

εfit
=
σεfit

εfit
. (3.82)

Additional uncertainties due to the asymmetries of the distributions are estimated from
the maximum positions ε̂fit by

∆εfit

εfit
=
|ε̂fit − εfit|

εfit
. (3.83)

The resulting uncertainties are listed in Tab. 3.16.

In a second step, the validity of the signal fit yields in the presence of B0 candidates
from BB background B decays is studied. Since the p.d.f.’s for this background are not
known, all B0 candidates available in the BB Monte Carlo sample are included into a
single fit. With 121 included BB background B0 candidates, the signal fit efficiency in
the channel η → γγ deviates by 3.7%, while the deviation in the channel η → π+π−π0

with 49 added BB background B0 candidates is 1.1%.
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η → γγ η → π+π−π0

∆εfit/εfit

(width) 3.3% 3.3%

(asymmetry) 0.0% 1.3%

Table 3.16 Relative systematic uncertainties ∆x/x on the signal fit efficiency x = εfit due
widths and asymmetries of its distributions for varied p.d.f. parameters in maximum-likelihood
fits to study samples for the channels η → γγ and η → π+π−π0.

3.8 Systematic Uncertainties

Systematic uncertainties on the measurement of the branching fraction B(B0 → ηφ)
come from uncertainties on the variables in Eq. 3.1. Since B is proportional to all
variables and the variables themselves are not correlated, all relative uncertainties are
added in quadrature.

Systematic uncertainties for single methods and channels have been discussed in Sec.
3.1, 3.6 and 3.7. Additional uncertainties on the signal selection efficiency εS come from
the Monte Carlo corrections introduced in Sec. 3.4. Uncertainties on the BB counts and
the channel branching fractions are taken from Sec. 3.2.

3.8.1 Efficiency Corrections

The tracking efficiency correction leaves an uncertainty of 0.8% for each GoodTracks-
Loose track [49]. Since these uncertainties are correlated, they are multiplied by the
number of tracks contributing to one B0 candidate. In the same manner, the PID tables
leave a correlated uncertainty on the corrected efficiency smaller than 1.0% for tracks
in the used momentum range [50]. Since only the identification of the K± candidates is
used as a cut, the π± candidates are not included here.

The correlated uncertainty on the reconstruction efficiency of photon candidates with
smeared energies is 2.5% per candidate [51]. The correlated uncertainty on the re-
construction efficiency of non-discarded π0 candidates is 5.0% per candidate [51].
While these uncertainties contain energy-independent contributions, there are addi-
tional energy-dependent uncertainties. To estimate their impact on this analysis, the
signal Monte Carlo sample is reprocessed with dilution and correction factors randomly
chosen from their Gaussian distributions. The deviation of the measured signal selec-
tion efficiency is the uncorrelated contribution to the systematic uncertainty. For the
maximum-likelihood method, this includes both the efficiencies εsel and εsig.

3.8.2 Method Summary

The relative statistical and systematic uncertainties of the candidate counting and the
maximum-likelihood method are summarized in Tab. 3.17 and 3.18, respectively. The
common uncertainties of both methods are listed in Tab. 3.19.
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η → γγ η → π+π−π0

σR/R 4.1 % 4.9%

∆R/R 4.9 % 5.5%

∆B/B 5.2 % 1.1%

σεS
/εS 1.2 % 1.5%

∆εS/εS
(shapes) 1.3 % 2.7%

(γ) 0.66% 3.3%

Table 3.17 (Uncorrelated) relative statistical uncertainties σx/x and systematic uncertainties
∆x/x on the background ratio x = R, the background number x = B and the signal selection
efficiency x = εS for the candidate counting method in the channels η → γγ and η → π+π−π0.

Assuming no observed signal, the uncertainties on background ratios and background
numbers for the candidate counting method correspond to uncertainties on the Bayesian
upper limit on the signal number of 5.2% in the channel η → γγ and 4.5% in the
channel η → π+π−π0. Assuming no contained signal and estimating an upper limit on
the signal fit yield of 7.38 from Fig. F.1, the relative uncertainty on the upper limit on
the substituted signal fit yield S′ of the maximum-likelihood fit in the channel η → γγ
is 3.0%. Assuming no contained signal and estimating an upper limit on the signal fit
yield of 6.2 from Fig. F.5, the relative uncertainty on the upper limit on the substituted
signal fit yield S′ of the maximum-likelihood fit in the channel η → π+π−π0 is 3.1%.
The added uncertainties for all channels and methods are given in Tab. 3.20.

3.8.3 Peaking Backgrounds

BB background that comes from correctly reconstructed B decays is not included in the
background distributions. Instead, it will peak in the signal region. Within the kinematic
range of this analysis, however, no resonances but the searched η and φ mesons are
expected. To eliminate unrecognized contributions, a Monte Carlo sample of 11.5× 106

BB events with exclusively charmless decays is processed. After application of the
common cuts on the number of tracks and the kaon identification of the K± candidates,
only the reconstructed decays listed in Tab. 3.21 are found in the signal box.

The decay B0 → ηK+K− is the non-resonant contribution to the analyzed decay chain
B0 → ηφ, φ→ K+K−. While the transition amplitudes for both B0 decays are identical
except for the creation of one additional uu pair, the phase-space population of the three-
body decay is very different. The squared invariant mass of the K+K− system is evenly
distributed within the limits [(2mK±)2, (mB0 −mη)2] given by the meson masses mK± ,
mB0 and mη [8], and only 0.57% fall into the reconstruction range. This fraction is even
further reduced by application of the selection cuts and fit ranges.

The resonance f0(980), which is simulated with a mass of 1 GeV/c2 and a width of
50MeV/c2, is largely included in the reconstruction range. It has, however, an unclear
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η → γγ η → π+π−π0

σεsel
/εsel 0.69% 0.77%

∆εsel/εsel (γ) 0.28% 1.9 %

σδfit
/δfit 7.1 % 7.4 %

σεfit
/εfit 2.3 % 2.0 %

∆εfit/εfit

(p.d.f.) 3.3 % 3.4 %

(BB) 3.7 % 1.1 %

(γ) 1.6 % 0.02%

Table 3.18 (Uncorrelated) relative statistical uncertainties σx/x and systematic uncertainties
∆x/x on the signal selection efficiency x = εsel, the signal fit bias x = δfit and the signal fit
efficiency x = εfit for the maximum-likelihood method in the channels η → γγ and η → π+π−π0.

η → γγ η → π+π−π0

∆εS/εS

(track) 1.6% 3.2%

(PID) 2.0% 2.0%

(γ) 5.0% 5.0%

∆NBB/NBB 1.1% 1.1%

∆Bch/Bch 1.6% 2.3%

Table 3.19 (Correlated) relative systematic uncertainties ∆x/x on the signal selection effi-
ciency x = εS , the BB counts x = NBB and the channel branching fractions x = Bch in the
channels η → γγ and η → π+π−π0.

structure and no sufficient coupling to gluons [57] to replace the φ meson in B0 → ηφ.
Since it has spin js = 0, it is also suppressed by the helicity selection.

3.9 Unblinded Results

After uncovering the signal boxes and unblinding the fit yields in the data sample, the
branching fractions B(B0 → ηφ) in the candidate counting and the maximum-likelihood
method are calculated. At this point, all uncertainties estimated from the signal Monte
Carlo, BB Monte Carlo and off-peak data samples are considered systematic, while
statistical uncertainties are placed on the numbers of candidates in the signal boxes and
sidebands and on the fit yields in the data sample. The uncovered signal boxes are
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η → γγ η → π+π−π0

∆B/B
(counting) 8.1% 9.3 %

(likelihood) 8.8% 8.7 %

Table 3.20 Added relative systematic uncertainties ∆x/x on the branching fraction x =
B(B0 → ηφ) for the candidate counting and maximum-likelihood methods in the channels η → γγ
and η → π+π−π0.

η → γγ η → π+π−π0

B0 → η f0(980) 3 2

B0 → ηK+K− 3 0

Table 3.21 Number of correctly reconstructed background B0 decays in the signal box of the
charmless Monte Carlo sample for the channels η → γγ and η → π+π−π0.

shown in App. C, and projections of the unblinded likelihood functions on the included
variables are shown in App. E.

3.9.1 Evaluation

The unblinded results of the candidate counting method are presented in Tab. 3.22. After
counting the number of B0 candidates in the signal box of the data sample, the signal
numbers in the channels η → γγ and η → π+π−π0 are calculated from Eq. 3.48, using
the background numbers listed in Tab. 3.12. The upper limits on the signal numbers
in Bayesian statistics are fitted to the candidate numbers and background numbers by
Eq. 3.65. The upper limits on the signal numbers in frequentist statistics are taken from
the tables of candidate numbers and background numbers published by Feldman and
Cousins [36]. To reduce the uncertainty from interpolation in the background numbers,
the respective table rows are graphically approximated by smooth curves [53]. The
combined signal number is obtained from adding the signal numbers in both channels.
The upper limits on the combined signal number are obtained from the added candidate
numbers and the added background numbers. The branching fractions and upper limits
on the branching fraction B(B0 → ηφ) are calculated from Eq. 3.1 and 3.7, respectively.
The used signal selection efficiencies are listed in Tab. 3.11. All other parameters are
given in Sec. 3.1 and 3.2.

The unblinded results of the maximum-likelihood method are presented in Tab. 3.23.
The signal fit yields in the channels η → γγ and η → π+π−π0 and their statistical
uncertainties are extracted from their negative logarithmic likelihoods (Eq. 3.80) as
described in Sec. 3.7.5 and shown in Fig. 3.35. The bias corrected signal yields are
defined by Eq. 3.79 and the biases listed in Tab. 3.15. The Bayesian upper limits on the
bias corrected signal yields are extracted as described in Sec. 3.7.5 from the normalized
integrals (Eq. 3.81) of the likelihood functions shown in Fig. 3.36. The combined bias
corrected signal yield is obtained from adding the bias corrected signal yields in both
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Figure 3.35 Negative logarithmic likelihood functions for the signal fit yields in the channels
η → γγ (left) and η → π+π−π0 (right). The signal yields are blinded in the maximum-likelihood
fits by added random constants. Their statistical uncertainties (marked by vertical dashed lines)
correspond to an increase of the negative logarithmic likelihoods by 1 (marked by horizontal
dashed lines).

channels. To determine the upper limit on the combined bias corrected signal yield, the
likelihood functions in Fig. 3.36 are convoluted into the likelihood function shown in Fig.
3.37. The combined bias corrected signal yield is then extracted from the normalized
integral of this function and the added fit biases. The branching fractions and upper
limits on the branching fraction B(B0 → ηφ) are calculated from Eq. 3.1 and 3.7,
respectively, using the bias corrected signal yields and the signal selection efficiencies
defined in Eq. 3.78. The individual signal selection and signal fit efficiencies are listed
in Tab. 3.14 and 3.15, respectively. All other parameters are given in Sec. 3.1 and 3.2.

For combining the results in the channels η → γγ and η → π+π−π0, Eq. 3.1 and 3.7 are
modified by

S → S1 + S2 (3.84)

and

εS Bch → (εS1 Bch1 + εS2 Bch2) , (3.85)

where S1,2 are the signal numbers, εS1,2 are the signal selection efficiencies and Bch1,2 are
the branching fractions of both channels. While the signal numbers are assumed to be
uncorrelated, systematic correlations between the signal selection efficiencies are obeyed
throughout the calculation. The branching fractions B(B0 → ηφ) from all methods,
channels and combined channels are compared in Fig. 3.38. The upper limits on the
branching fraction B(B0 → ηφ) from all methods, channels and combined channels are
compared in Fig. 3.39.
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Figure 3.36 Normalized likelihood functions for the signal fit yields in the channels η → γγ
(left) and η → π+π−π0 (right). The signal yields are blinded in the maximum-likelihood fits
by added random constants. Their Bayesian upper limits (marked by the dashed bands on the
right) are determined by integrating the normalized likelihood functions between the fit biases
(marked by the dashed bands on the left) and 90% c.l. The bands contain the uncertainties on
the fit biases and the resolutions of the integration.
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Figure 3.37 Normalized likelihood function
for the combined signal yield of the channels
η → γγ and η → π+π−π0 obtained from con-
voluting the likelihood functions in Fig. 3.36.
The Bayesian upper limit on the combined sig-
nal yield (marked by the dashed band on the
right) is determined by integrating the normal-
ized likelihood function between the added fit
biases (marked by the dashed band on the left)
and 90% c.l. The error bands contain the un-
certainties on the fit biases and the resolutions
of the convolution and the integration.
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3.9.2 Conclusion

All results are dominated by their statistical uncertainties. Within these uncertainties,
the branching fractions for the combined channels agree in both methods at 24% c.l.
However, the uncertainty obtained from the maximum-likelihood method is 10% smaller
than the uncertainty obtained from the candidate counting method. Since the signal
yield of the maximum-likelihood method is nevertheless consistent with 0 at 1.0% c.l.
and hence excludes this value with only three standard deviations, the signal is not
considered significant. Including its systematic uncertainties, the upper limit on the
branching fraction obtained from the maximum-likelihood method is

B(B0 → ηφ) < 3.28× 10−6 (90%) . (3.86)

This upper limit is consistent with all theoretical predictions in Tab. 2.1, but 64% smaller
than the upper limit measured by the CLEO collaboration [33]. It is, however, 33% larger
than an upper limit concurrently measured by the BABAR collaboration [58].



98 3 Data Analysis

η
→
γ
γ

η
→
π

+
π
−
π

0
co

m
bi

ne
d

N
si

g
6

±
2.

5
2

±
1.

4
8

±
2.

8

B
3.

88
±

0.
35
±

0.
32

3.
01
±

0.
29
±

0.
22

6.
89
±

0.
46
±

0.
39

S
2.

12
±

2.
47
±

0.
32

−1
.0

1
±

1.
44
±

0.
22

1.
11
±

2.
86
±

0.
39

S
B

a
y

<
6.

87
±

0.
37

<
3.

53
±

0.
10

<
6.

76
±

0.
38

S
F
C

<
7.

60
±

0.
51

<
3.

05
±

0.
26

<
7.

10
±

0.
60

B
(0
.7

6
±

0.
89
±

0.
12

)
×

10
−6

(−
0.

8
±

1.
2
±

0.
2

)
×

10
−6

(0
.2

8
±

0.
72
±

0.
10

)
×

10
−6

B B
a
y

(
<

2.
46

±
0.

21
)
×

10
−6

(
<

2.
91

±
0.

25
)
×

10
−6

(
<

1.
69

±
0.

13
)
×

10
−6

B F
C

(
<

2.
73

±
0.

25
)
×

10
−6

(
<

2.
51

±
0.

29
)
×

10
−6

(
<

1.
77

±
0.

18
)
×

10
−6

T
ab

le
3.

22
U

nb
lin

de
d

re
su

lt
s

of
th

e
ca

nd
id

at
e

co
un

ti
ng

m
et

ho
d

in
th

e
ch

an
ne

ls
η
→

γ
γ

an
d
η
→

π
+
π
−
π

0
an

d
fo

r
bo

th
ch

an
ne

ls
co

m
bi

ne
d:

N
um

be
r

of
si

gn
al
B

0
ca

nd
id

at
es
N

si
g
,b

ac
kg

ro
un

d
nu

m
be

r
B

,s
ig

na
ln

um
be

r
S

,B
ay

es
ia

n
up

pe
r

lim
it
S

B
a
y

an
d

Fe
ld

m
an

–C
ou

si
ns

up
pe

r
lim

it
S

F
C

on
th

e
si

gn
al

nu
m

be
r,

br
an

ch
in

g
fr

ac
ti

on
B(
B

0
→
η
φ
)

an
d

B
ay

es
ia

n
up

pe
r

lim
it
B B

a
y
(B

0
→
η
φ
)

an
d

Fe
ld

m
an

–C
ou

si
ns

up
pe

r
lim

it
B F

C
(B

0
→
η
φ
)

on
th

e
br

an
ch

in
g

fr
ac

ti
on

.
T

he
fir

st
un

ce
rt

ai
nt

ie
s

ar
e

st
at

is
ti

ca
l,

th
e

se
co

nd
un

ce
rt

ai
nt

ie
s

ar
e

sy
st

em
at

ic
.

T
he

up
pe

r
lim

it
s

ar
e

gi
ve

n
at

90
%

c.
l.



3.9 Unblinded Results 99

η
→
γ
γ

η
→
π

+
π
−
π

0
co

m
bi

ne
d

S
23
.4

±
8.

4
9.

3
±

4.
5

32
.7

±
9.

5

S
′

21
.2

±
8.

4
±

0.
2

7.
0
±

4.
5
±

0.
1

28
.7

±
9.

5
±

0.
2

S
′ B
a
y

<
34
.5

8
±

0.
32

<
15
.8

7
±

0.
23

<
45
.6

5
±

0.
39

B
(

2.
13
±

0.
84
±

0.
18

)
×

10
−6

(1
.4

4
±

0.
92
±

0.
12

)
×

10
−6

(
1.

93
±

0.
64
±

0.
13

)
×

10
−6

B B
a
y

(
<

3.
47

±
0.

29
)
×

10
−6

(
<

3.
26

±
0.

27
)
×

10
−6

(
<

3.
08

±
0.

20
)
×

10
−6

T
ab

le
3.

23
U

nb
lin

de
d

re
su

lt
s

of
th

e
m

ax
im

um
-l
ik

el
ih

oo
d

m
et

ho
d

in
th

e
ch

an
ne

ls
η
→

γ
γ

an
d
η
→

π
+
π
−
π

0
an

d
fo

r
bo

th
ch

an
ne

ls
co

m
bi

ne
d:

Si
gn

al
nu

m
be

r
S

,b
ia

s
co

rr
ec

te
d

si
gn

al
nu

m
be

r
S
′ ,

B
ay

es
ia

n
up

pe
r

lim
it
S
′ B
a
y

on
th

e
bi

as
co

rr
ec

te
d

si
gn

al
nu

m
be

r,
br

an
ch

in
g

fr
ac

ti
on
B(
B

0
→
η
φ
)

an
d

B
ay

es
ia

n
up

pe
r

lim
it
B B

a
y
(B

0
→
η
φ
)

on
th

e
br

an
ch

in
g

fr
ac

ti
on

.
T

he
fir

st
un

ce
rt

ai
nt

ie
s

ar
e

st
at

is
ti

ca
l,

th
e

se
co

nd
un

ce
rt

ai
nt

ie
s

ar
e

sy
st

em
at

ic
.

T
he

up
pe

r
lim

it
s

ar
e

gi
ve

n
at

90
%

c.
l.



100 3 Data Analysis

co
u

n
ti

n
g

lik
el

ih
o

o
d

γγ→η

combined

combined

)φη→0
Branching Fraction B(B

γγ→η

0π-π+π→η

0π-π+π→η

-0.2 -0.1 0 0.1 0.2 0.3

-5x10

Figure 3.38 Unblinded branching fractions B(B0 → ηφ) from the candidate counting and the
maximum-likelihood method in the in the channels η → γγ and η → π+π−π0 and for both
channels combined. The error bars contain statistical and systematic uncertainties.
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counting and the maximum-likelihood method in the in the channels η → γγ and η → π+π−π0

and for both channels combined. The upper limits from candidate counting are calculated in
Bayesian and frequentist (NFC) statistics. All upper limits are given at 90% c.l. The error bars
contain systematic uncertainties.



Summary

Presented was a search for the rare hadronic B meson decay B0 → ηφ. It was based
on the data collected in the first two years of the BABAR experiment. The reconstruc-
tion of data events was performed in the BABAR software infrastructure. φ mesons
were reconstructed in the channel φ → K+K−, while η mesons were reconstructed in
the channels η → γγ and η → π+π−π0. The combined decay candidates were separated
from background contributions by a two-folded approach, including a cut-based counting
method and a maximum-likelihood fitting method. Both methods employed discrimi-
nating variables previously used by the ARGUS [55], CLEO [43] and Crystal Ball [56]
experiments. Parameterizations for the distributions of these variables were fitted in a
separate ROOT [53] application, utilizing imported RooFit [54] software packages.

In both separation methods, no significant signal contribution was found. The statistical
uncertainty on the branching fraction B(B0 → ηφ) is therefore expressed by an upper
limit. Seizable systematic uncertainties arise in the candidate counting method from

• the estimation of the number of background candidates at the final number of cuts
from the numbers of background candidates at smaller numbers of cuts and

• the estimation of the selection efficiency in the data sample from the selection
efficiency in the signal Monte Carlo sample.

The largest systematic uncertainties of the maximum-likelihood method come from

• the estimation of the distributions of the discriminating variables in the data sam-
ple from the distributions in the signal Monte Carlo and the off-peak data sample
and

• the estimation of the efficiency and the bias of the maximum-likelihood fit to the
data sample from fits to study samples generated from these distributions.

These uncertainties add less than 10% to the upper limits in both methods. The cited
upper limit in the maximum-likelihood method B(B0 → ηφ) < 3.28 × 10−6 (90%) con-
tains the smallest statistical uncertainty. This result is consistent with recent theoretical
predictions [27, 29, 32], but 64% smaller than the upper limit previously measured by
the CLEO collaboration [33]. Since no theoretical prediction was excluded, this analysis
supports the Standard Model of particle physics. The achieved gain in precision corre-
sponds to the higher integrated luminosity and the improved reconstruction efficiency
provided by the BABAR experiment.
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Relying on the yield of the performed maximum-likelihood fit, an application of this
method to twice the integrated luminosity is expected to obtain a significant signal
contribution. An extension of the presented analysis onto the data currently available
at the BABAR experiment (see Fig. 3.1) is thus proposed. Such an analysis could also
profit from the improved Monte Carlo simulation, reducing the systematic uncertainties
imposed by supplementary correction methods. As for all analyses depending on off-
peak data, an increase in their integrated luminosity would distinctly contribute to the
reduction of systematic uncertainties.
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A.1 Channel η → γγ
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Figure A.1 Distribution of the invariant
mass of the η candidates in the data (a), signal
Monte Carlo (b) and off-peak data (c) sample.
Solid curves show the fitted p.d.f.’s. Dashed
curves show the background components.
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Figure A.2 Distribution of the composite
mass of the φ candidates in the data (a), signal
Monte Carlo (b) and off-peak data (c) sample.
Solid curves show the fitted p.d.f.’s. Dashed
curves show the background components.
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mγγ mφ

signal

S= 0.6955± 0.0063
µ= (544.16± 0.15)MeV/c2

σ= (14.94± 0.16)MeV/c2

r= 3
α= 1.087± 0.024
c0 = 1
c1 =−0.30± 0.26

S=0.9679± 0.0038
µ=(1.019389± 0.000022)GeV/c2

Γ = (4.647± 0.099)MeV/c2

σ=(1.141± 0.077)MeV/c2

c0 =1
c1 =−9.5923± 0.0025
c2 =8.5743± 0.0023

qq

S= 0.1437± 0.0040
µ= (546.828± 0.081)MeV/c2

σ= (15.542± 0.079)MeV/c2

r= 3
α= 1.087
c0 = 1
c1 =−1.009± 0.018

S=0.0998± 0.0032
µ=(1.01931± 0.00013)GeV/c2

Γ =4.647MeV/c2

σ=(1.38± 0.23)MeV/c2

c0 =−0.1
c1 =−3.081± 0.072
c2 =3.374± 0.076

data

S= 0.13808± 0.00097
µ= (546.4487± 0.0096)MeV/c2

σ= (14.574± 0.018)MeV/c2

r= 3
α= 1.087
c0 = 1
c1 =−1.0350± 0.0058

S=0.0855± 0.0012
µ=(1.019483± 0.000038)GeV/c2

Γ =4.647MeV/c2

σ=(0.988± 0.085)MeV/c2

c0 =−0.1
c1 =0.188808± 0.000030
c2 =−0.088395± 0.000032

Table A.1 Signal fractions S and p.d.f. parameters of the invariant mass mγγ of the η candi-
dates (Eq. 3.44, Fig. A.1) and the composite mass mφ of the φ candidates (Eq. 3.46 and 3.47,
Fig. A.2) in the signal Monte Carlo, off-peak (qq) data and data sample.
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A.2 Channel η → π+π−π0
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Figure A.3 Distribution of the invariant
mass of the π0 candidates in the data (a),
signal Monte Carlo (b) and off-peak data (c)
sample. Solid curves show the fitted p.d.f.’s.
Dashed curves show the background compo-
nents.
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mγγ

signal

S=0.5015± 0.0078
µ=(133.916± 0.086)MeV/c2

σ=(5.85± 0.10)MeV/c2

r1 =10
r2 =8
α1 =0.930± 0.030
α1 =−1.467± 0.062
c0 =−0.001
c1 =2.62± 0.30
c2 =−1.467± 0.062

qq

S=0.2142± 0.0056
µ=(135.05± 0.14) MeV/c2

σ=(6.15± 0.21)MeV/c2

r1 =10
r2 =8
α1 =0.930
α2 =−1.467
c0 =0.1
c1 =0.576± 0.060
c1 =−3.4± 0.26

data

S=0.2423± 0.0016
µ=(134.950± 0.043)MeV/c2

σ=(6.667± 0.060)MeV/c2

r1 =10
r2 =8
α1 =0.930
α2 =−1.467
c0 =0.1
c1 =−0.488± 0.051
c1 =1.17± 0.22

Table A.2 Signal fractions S and p.d.f. parameters for the invariant mass mγγ of the π0

candidates (Eq. 3.45, Fig. A.3) in the signal Monte Carlo, off-peak (qq) data and data sample.
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Figure A.4 Distribution of the composite
mass of the η candidates in the data (a), signal
Monte Carlo (b) and off-peak data (c) sample.
Solid curves show the fitted p.d.f.’s. Dashed
curves show the background components.
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Figure A.5 Distribution of the composite
mass of the φ candidates in the data (a), signal
Monte Carlo (b) and off-peak data (c) sample.
Solid curves show the fitted p.d.f.’s. Dashed
curves show the background components.
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mη mφ

signal

S=0.5993± 0.0075
µ=(547.496± 0.052)MeV/c2

σ=(4.370± 0.056)MeV/c2

r1 =10
r2 =3
α1 =1.107± 0.026
α2 =−1.444± 0.035
c0 =−1
c1 =3.5537± 0.0069
c2 =−3.078± 0.013

S= 0.9556± 0.0042
µ= (1.019482± 0.000024)GeV/c2

Γ= (4.80± 0.10)MeV/c2

σ= (0.952± 0.092)MeV/c2

c0 = 1
c1 =−7.6429± 0.0048
c2 = 6.6295± 0.0048

qq

S=0.1155± 0.0038
µ=(547.636± 0.029)MeV/c2

σ=(4.306± 0.066)MeV/c2

r1 =10
r2 =3
α1 =1.107
α2 =−1.444
c0 =0.01
c1 =−1.951± 0.064
c1 =4.12± 0.14

S= 0.1423± 0.0048
µ= (1.01981± 0.00011)GeV/c2

Γ= 4.80MeV/c2

σ= (1.53± 0.21)MeV/c2

c0 =−0.1
c1 =−2.383± 0.015
c2 = 2.632± 0.016

data

S=0.1223± 0.0013
µ=(547.761± 0.044)MeV/c2

σ=(5.1063± 0.0043)MeV/c2

r1 =10
r2 =3
α1 =1.107
α2 =−1.444
c0 =0.01
c1 =−4.239± 0.012
c1 =9.025± 0.027

S= 0.1218± 0.0014
µ= (1.019578± 0.000044)GeV/c2

Γ= 4.80MeV/c2

σ= (0.891± 0.054)MeV/c2

c0 =−0.1
c1 = 0.18608± 0.00035
c2 =−0.08559± 0.00037

Table A.3 Signal fractions S and p.d.f. parameters for the composite masses mη of the η
candidates (Eq. 3.45, Fig. A.4) and mφ of the φ candidates (Eq. 3.46 and 3.47, Fig. A.5) in the
signal Monte Carlo, off-peak (qq) data and data sample.
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B.1 Channel η → γγ
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Figure B.1 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the kaon identification of the K± candidates.

 [GeV]min γ energy cut Eγ
0 0.2 0.4 0.6 0.8 1

)φη
→0

(B
0.

9
ex

p
. u

p
p

er
 li

m
it

 B

0.2

0.25

0.3

0.35

0.4

0.45

-5x10

 Energy CutγExp. Upper Limit vs. 

Figure B.2 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the energy of the photon candidates.
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Figure B.3 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the invariant mass of the η candidates.
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Figure B.4 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the composite mass of the φ candidates.



B.1 Channel η → γγ 121

maxFisher cut F
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)φη
→0

(B
0.

9
ex

p
. u

p
p

er
 li

m
it

 B

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
-5x10

Exp. Upper Limit vs. Fisher Cut

Figure B.5 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the Fisher discriminant.
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Figure B.6 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the helicity angle of the η candidates.
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Figure B.7 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the helicity angle of the φ candidates.
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B.2 Channel η → π+π−π0
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Figure B.8 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the kaon identification of the K± candidates.
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Figure B.9 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the kaon identification of the π± candidates.
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Figure B.10 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the energy of the photon candidates.
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Figure B.11 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the invariant mass of the π0 candidates.
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Figure B.12 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the composite mass of the η candidates.
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Figure B.13 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the composite mass of the φ candidates.
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Figure B.14 Expected upper limit on the
branching fraction B̂Bay(B0 → ηφ) vs. cut on
the Fisher discriminant.
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C.1 Channel η → γγ Before Cuts

(a) (b)

(c) (d)

Figure C.1 Joint distribution of energy substituted mass and energy difference in the signal
Monte Carlo (a), BB Monte Carlo (b), off-peak data (c) and data (d) sample. Solid lines enclose
the signal box. Dashed lines enclose the sidebands. The shaded area in (d) was blinded in the
analysis.
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C.2 Channel η → γγ After Optimized Cuts

(a) (b)

(c) (d)

Figure C.2 Joint distribution of energy substituted mass and energy difference in the signal
Monte Carlo (a), BB Monte Carlo (b), off-peak data (c) and data (d) sample. Solid lines enclose
the signal box. Dashed lines enclose the sidebands. The shaded area in (d) was blinded in the
analysis.
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C.3 Channel η → π+π−π0 Before Cuts

(a) (b)

(c) (d)

Figure C.3 Joint distribution of energy substituted mass and energy difference in the signal
Monte Carlo (a), BB Monte Carlo (b), off-peak data (c) and data (d) sample. Solid lines enclose
the signal box. Dashed lines enclose the sidebands. The shaded area in (d) was blinded in the
analysis.



C.4 Channel η → π+π−π0 After Optimized Cuts 129

C.4 Channel η → π+π−π0 After Optimized Cuts

(a) (b)

(c) (d)

Figure C.4 Joint distribution of energy substituted mass and energy difference in the signal
Monte Carlo (a), BB Monte Carlo (b), off-peak data (c) and data (d) sample. Solid lines enclose
the signal box. Dashed lines enclose the sidebands. The shaded area in (d) was blinded in the
analysis.
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D.1 Channel η → γγ
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Figure D.1 Distribution, signal fraction S and p.d.f. parameters of the energy substituted
mass (Eq. 3.41 and 3.44) in the signal Monte Carlo sample. The solid curve shows the fitted
p.d.f. The dashed curve shows the background component.
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Figure D.2 Distribution and p.d.f. parameters of the energy substituted mass (Eq. 3.41) in
the off-peak data sample. The curve shows the fitted p.d.f.
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Figure D.3 Distribution, signal fraction S and p.d.f. parameters of the energy difference (Eq.
3.42 and 3.45) in the signal Monte Carlo sample. The solid curve shows the fitted p.d.f. The
dashed curve shows the background component.
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Figure D.4 Distribution and p.d.f. parameters of the energy difference (Eq. 3.42) in the off-
peak data sample. The curve shows the fitted p.d.f.
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Figure D.5 Distribution, signal fraction S and p.d.f. parameters of the invariant mass of the η
candidates (Eq. 3.44) in the signal Monte Carlo sample. The solid curve shows the fitted p.d.f.
The dashed curve shows the background component.

]
2

 [GeV/cγγ mass mη
0.48 0.5 0.52 0.54 0.56 0.58 0.6

)]2
en

tr
ie

s/
b

in
 [

1/
(0

.0
01

4 
G

eV
/c

0

20

40

60

80

100

120

140

160

 Mass (Offpeak Data)η

S=0.108± 0.017
µ=(546.205± 0.093) MeV/c2

σ=(13.7± 2.1)MeV/c2

r=3
α=1.093
c0 =1
c1 =−1.119± 0.036

χ2/NDF =113/95

Figure D.6 Distribution, signal fraction S and p.d.f. parameters of the invariant mass of the
η candidates (Eq. 3.44) in the off-peak data sample. The solid curve shows the fitted p.d.f. The
dashed curve shows the background component.
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Figure D.7 Distribution, signal fraction S and p.d.f. parameters of the composite mass of the
φ candidates (Eq. 3.46 and 3.47) in the signal Monte Carlo sample. The solid curve shows the
fitted p.d.f. The dashed curve shows the background component.
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Figure D.8 Distribution, signal fraction S and p.d.f. parameters of the composite mass of the
φ candidates (Eq. 3.46 and 3.47) in the off-peak data sample. The solid curve shows the fitted
p.d.f. The dashed curve shows the background component.
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Figure D.9 Distribution and p.d.f. parameters of the Fisher discriminant (sum of three Gaus-
sian p.d.f.’s) in the signal Monte Carlo sample. The curve shows the fitted p.d.f.
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Figure D.10 Distribution and p.d.f. parameters of the Fisher discriminant (sum of three Gaus-
sian p.d.f.’s) in the off-peak data sample. The curve shows the fitted p.d.f.
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Figure D.11 Distribution and p.d.f. parameters of the magnitude of the cosine of the helicity
angle of the φ candidates in the signal Monte Carlo sample. The curve shows the fitted p.d.f.
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Figure D.12 Distribution and p.d.f. parameters of the magnitude of the cosine of the helicity
angle of the φ candidates in the off-peak data sample. The curve shows the fitted p.d.f.



138 D Probability Density Functions

D.2 Channel η → π+π−π0
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Figure D.13 Distribution, signal fraction S and p.d.f. parameters of the energy substituted
mass (Eq. 3.41 and 3.44) in the signal Monte Carlo sample. The solid curve shows the fitted
p.d.f. The dashed curve shows the background component.
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Figure D.14 Distribution and p.d.f. parameters of the energy substituted mass (Eq. 3.41) in
the off-peak data sample. The curve shows the fitted p.d.f.
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Figure D.15 Distribution, signal fraction S and p.d.f. parameters of the energy difference (Eq.
3.42 and 3.45) in the signal Monte Carlo sample. The solid curve shows the fitted p.d.f. The
dashed curve shows the background component.
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Figure D.16 Distribution and p.d.f. parameters of the energy difference (Eq. 3.42) in the
off-peak data sample. The curve shows the fitted p.d.f.
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Figure D.17 Distribution, signal fraction S and p.d.f. parameters of the invariant mass of the
π0 candidates (Eq. 3.45) in the signal Monte Carlo sample. The solid curve shows the fitted
p.d.f. The dashed curve shows the background component.
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Figure D.18 Distribution, signal fraction S and p.d.f. parameters of the invariant mass of the
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Figure D.19 Distribution, signal fraction S and p.d.f. parameters of the composite mass of
the η candidates (Eq. 3.45) in the signal Monte Carlo sample. The solid curve shows the fitted
p.d.f. The dashed curve shows the background component.
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Figure D.21 Distribution, signal fraction S and p.d.f. parameters of the composite mass of
the φ candidates (Eq. 3.46 and 3.47) in the signal Monte Carlo sample. The solid curve shows
the fitted p.d.f. The dashed curve shows the background component.
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Figure D.22 Distribution, signal fraction S and p.d.f. parameters of the composite mass of the
φ candidates (Eq. 3.46 and 3.47) in the off-peak data sample. The solid curve shows the fitted
p.d.f. The dashed curve shows the background component.
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Figure D.23 Distribution and p.d.f. parameters of the Fisher discriminant (sum of three Gaus-
sian p.d.f.’s) in the signal Monte Carlo sample. The curve shows the fitted p.d.f.
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Figure D.24 Distribution and p.d.f. parameters of the Fisher discriminant (sum of three Gaus-
sian p.d.f.’s) in the off-peak data sample. The curve shows the fitted p.d.f.
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Figure D.25 Distribution and p.d.f. parameters of the magnitude of the cosine of the helicity
angle of the φ candidates in the signal Monte Carlo sample. The curve shows the fitted p.d.f.
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Figure D.26 Distribution and p.d.f. parameters of the magnitude of the cosine of the helicity
angle of the φ candidates in the off-peak data sample. The curve shows the fitted p.d.f.
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E.1 Channel η → γγ
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Figure E.1 Distributions of the energy substituted mass in a mixed sample of off-peak data,
BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample (b). The solid
curves show projections of the fitted likelihood functions. The distribution and the likelihood
function in (b) were blinded in the analysis.

 E [GeV]∆energy difference 
-0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4

en
tr

ie
s/

b
in

 [
1/

(0
.0

08
 G

eV
)]

0

10

20

30

40

50

60

70

80

90
 = 117.52 / 98DF/N2χ

Energy Difference (Offpeak Data + MC)

(a)

 E [GeV]∆energy difference 
-0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4

en
tr

ie
s/

b
in

 [
1/

(0
.0

08
 G

eV
)]

0

50

100

150

200

250
 = 109.75 / 98DF/N2χ

Energy Difference (Data)

(b)

Figure E.2 Distributions of the energy difference in a mixed sample of off-peak data, BB
Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample (b). The solid
curves show projections of the fitted likelihood functions. The distribution and the likelihood
function in (b) were blinded in the analysis.
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Figure E.3 Distributions of the invariant mass of the η candidates in a mixed sample of off-
peak data, BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample (b).
The solid curves show projections of the fitted likelihood functions. The distribution and the
likelihood function in (b) were blinded in the analysis.
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Figure E.4 Distributions of the composite mass of the φ candidates in a mixed sample of
off-peak data, BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample
(b). The solid curves show projections of the fitted likelihood functions. The distribution and
the likelihood function in (b) were blinded in the analysis.
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Figure E.5 Distributions of the Fisher discriminant in a mixed sample of off-peak data, BB
Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample (b). The solid
curves show projections of the fitted likelihood functions. The distribution and the likelihood
function in (b) were blinded in the analysis.
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Figure E.6 Distributions of the magnitude of the cosine of the helicity angle of the φ candidates
in a mixed sample of off-peak data, BB Monte Carlo and 1000 signal Monte Carlo events (a)
and in the data sample (b). The solid curves show projections of the fitted likelihood functions.
The distribution and the likelihood function in (b) were blinded in the analysis.
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Figure E.7 Distributions of the energy substituted mass in a mixed sample of off-peak data,
BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample (b). The solid
curves show projections of the fitted likelihood functions. The distribution and the likelihood
function in (b) were blinded in the analysis.
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Figure E.8 Distributions of the energy substituted mass in a mixed sample of off-peak data,
BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample (b). The solid
curves show projections of the fitted likelihood functions. The distribution and the likelihood
function in (b) were blinded in the analysis.
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Figure E.9 Distributions of the invariant mass of the π0 candidates in a mixed sample of
off-peak data, BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample
(b). The solid curves show projections of the fitted likelihood functions. The distribution and
the likelihood function in (b) were blinded in the analysis.
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Figure E.10 Distributions of the composite mass of the η candidates in a mixed sample of
off-peak data, BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample
(b). The solid curves show projections of the fitted likelihood functions. The distribution and
the likelihood function in (b) were blinded in the analysis.
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Figure E.11 Distributions of the composite mass of the φ candidates in a mixed sample of
off-peak data, BB Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample
(b). The solid curves show projections of the fitted likelihood functions. The distribution and
the likelihood function in (b) were blinded in the analysis.
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Figure E.12 Distributions of the Fisher discriminant in a mixed sample of off-peak data, BB
Monte Carlo and 1000 signal Monte Carlo events (a) and in the data sample (b). The solid
curves show projections of the fitted likelihood functions. The distribution and the likelihood
function in (b) were blinded in the analysis.



152 E Likelihood Projections

)|φ λθ helicity angle |cos(φ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

en
tr

ie
s/

b
in

 [
1/

0.
01

]

0

10

20

30

40

50

60  = 170.17 / 98DF/N2χ

 Helicity Angle (Offpeak Data + MC)φ

(a)

)|φ λθ helicity angle |cos(φ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

en
tr

ie
s/

b
in

 [
1/

0.
01

]
0

20

40

60

80

100

120

140  = 190.31 / 98DF/N2χ

 Helicity Angle (Data)φ

(b)

Figure E.13 Distributions of the magnitude of the cosine of the helicity angle of the φ can-
didates in a mixed sample of off-peak data, BB Monte Carlo and 1000 signal Monte Carlo
events (a) and in the data sample (b). The solid curves show projections of the fitted likelihood
functions. The distribution and the likelihood function in (b) were blinded in the analysis.
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F.1 Channel η → γγ
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Figure F.1 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 0 signal candidates.
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Figure F.2 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 5 signal candidates.
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Figure F.3 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 10 signal candidates.
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Figure F.4 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 25 signal candidates.
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F.2 Channel η → π+π−π0
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Figure F.5 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 0 signal candidates.
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Figure F.6 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 5 signal candidates.
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Figure F.7 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 10 signal candidates.
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Figure F.8 Distribution of the signal yield in
500 maximum-likelihood fits to study samples
with 25 signal candidates.
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